Physics of Particles and Nuclei

, Volume 49, Issue 1, pp 1–4 | Cite as

Integrable cosmological models in the Einstein and in the Jordan frames and Bianchi-I cosmology

  • A. Yu. Kamenshchik
  • E. O. Pozdeeva
  • A. Tronconi
  • G. Venturi
  • S. Yu. Vernov
The International Session-Conference of SNP PSD RAS “Physics of Fundamental Interactions” April 12–15, 2016, Dubna, Russia Session 7—Gravitation and Cosmology


We study integrable models in the Bianchi I metric case with scalar fields minimally and non-minimally coupled with gravity and the correspondence between their general solutions. Using the model with a minimally coupled scalar field and a constant potential as an example, we demonstrate how to obtain the general solutions of the corresponding models in the Jordan frame.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. A. Chernikov and E. A. Tagirov, “Quantum theory of scalar fields in de Sitter space-time”, Annales Poincare Phys. Theor. A 9, 109 (1968), E. A. Tagirov, “Consequences of field quantization in de Sitter type cosmological models”, Annals Phys 76, 561 (1973).ADSMathSciNetMATHGoogle Scholar
  2. 2.
    C. G. Callan, S. R. Coleman, and R. Jackiw, “A new improved energy–momentum tensor”, Annals Phys 59, 42 (1970).ADSMathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    P. A. R. Ade et al. (Planck Collab.), Planck 2015 Results, XX. Constraints on inflation, Astron. Astrophys 594, A20 (2016); arXiv:1502.02114.CrossRefGoogle Scholar
  4. 4.
    B. L. Spokoiny, “Inflation and generation of perturbations in Broken symmetric theory of gravity”, Phys. Lett. B 147, 39–43 (1984), T. Futamase and K.-I. Maeda, “Chaotic inflationary scenario in models having nonminimal coupling with curvature”, Phys. Rev. D 39, 399–404 (1989), R. Fakir and W. G. Unruh, “Improvement on cosmological chaotic inflation through nonminimal coupling”, Phys. Rev. D 41, 1783–1791 (1990), M. V. Libanov, V. A. Rubakov, and P. G. Tinyakov, “Cosmology with nonminimal scalar field: Graceful entrance into inflation”, Phys. Lett. B 442, 63 (1998); arXiv:hep-ph/9807553, A. Cerioni, F. Finelli, A. Tronconi, and G. Venturi, “Inflation and reheating in induced gravity”, Phys. Lett. B 681, 383–386 (2009); arXiv:0906.1902, R. Kallosh, A. Linde, and D. Roest, “The double attractor behavior of induced inflation”, J. High Energy Phys. 1409, 062 (2014); arXiv:1407.4471, M. Rinaldi, L. Vanzo, S. Zerbini, and G. Venturi, “Inflationary quasi-scale invariant attractors”, Phys. Rev. D 93, 024040 (2016); arXiv:1505.03386.ADSCrossRefGoogle Scholar
  5. 5.
    F. L. Bezrukov and M. Shaposhnikov, “The standard model Higgs boson as the inflaton”, Phys. Lett. B 659, 703 (2008); arXiv:0710.3755, A. O. Barvinsky, A. Y. Kamenshchik, and A. A. Starobinsky, “Inflation scenario via the standard model Higgs boson and LHC”, J. Cosmol. Astropart. Phys 0811, 021 (2008); arXiv:0809.2104, F. Bezrukov, D. Gorbunov, and M. Shaposhnikov, “On initial conditions for the Hot Big Bang”, J. Cosmol. Astropart. Phys 0906, 029 (2009); arXiv:0812.3622, A. O. Barvinsky, A. Y. Kamenshchik, C. Kiefer, A. A. Starobinsky, and C. F. Steinwachs, “Asymptotic freedom in inflationary cosmology with a nonminimally coupled Higgs field”, J. Cosmol. Astropart. Phys 0912, 003 (2009); arXiv:0904.1698, A. De Simone, M. P. Hertzberg, and F. Wilczek, “Running inflation in the standard model”, Phys. Lett. B 678, 1 (2009); arXiv:0812.4946, F. L. Bezrukov, A. Magnin, M. Shaposhnikov, and S. Sibiryakov, “Higgs inflation: Consistency and generalizations”, J. High Energy Phys 1101, 016 (2011); arXiv:1008.5157, A. O. Barvinsky, A. Yu. Kamenshchik, C. Kiefer, A. A. Starobinsky, and C. F. Steinwachs, “Higgs boson, renormalization group, and cosmology”, Eur. Phys. J. C 72, 2219 (2012); arXiv:0910.1041, F. Bezrukov, “The Higgs field as an inflaton”, Class. Quant. Grav 30, 214001 (2013); arXiv:1307.0708, J. Ren, Z.-Z. Xianyu, and H. J. He, “Higgs gravitational interaction, weak boson scattering, and Higgs inflation in Jordan and Einstein frames”, J. Cosmol. Astropart. Phys 1406, 032 (2014); arXiv:1404.4627.ADSCrossRefGoogle Scholar
  6. 6.
    E. Elizalde, S. D. Odintsov, E. O. Pozdeeva, and S. Yu. Vernov, “Renormalization-group inflationary scalar electrodynamics and scenarios confronted with Planck2013 and BICEP2 results”, Phys. Rev. D 90, 084001 (2014); arXiv:1408.1285, T. Inagaki, R. Nakanishi, and S. D. Odintsov, “Non-minimal twoloop inflation”, Phys. Lett. B 745, 105 (2015); arXiv:1502.06301, E. Elizalde, S. D. Odintsov, E. O. Pozdeeva, and S. Yu. Vernov, “Cosmological attractor inflation from the RG-improved Higgs sector of finite Gauge theory”, J. Cosmol. Astropart. Phys 1602, 025 (2016); arXiv:1509.08817.ADSCrossRefGoogle Scholar
  7. 7.
    A. Yu. Kamenshchik, E. O. Pozdeeva, A. Tronconi, G. Venturi, and S. Yu. Vernov, “Integrable cosmological models with non-minimally coupled scalar fields”, Class. Quant. Grav 31, 105003 (2014); arXiv:1307.1910.ADSMathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    A. Yu. Kamenshchik, E. O. Pozdeeva, A. Tronconi, G. Venturi, and S. Yu. Vernov, “Interdependence between integrable cosmological models with minimal and non-minimal coupling”, Class. Quant. Grav 33, 015004 (2016); arXiv:1509.00590.ADSMathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    A. Yu. Kamenshchik, E. O. Pozdeeva, A. Tronconi, G. Venturi, and S. Yu. Vernov, “Transformations between Jordan and Einstein frames: Bounces, antigravity, and crossing singularities”, Phys. Rev. D 94, 063510 (2016); arXiv:1602.07192, A. Yu. Kamenshchik, E. O. Pozdeeva, A. Tronconi, G. Venturi, and S. Yu. Vernov, “General solutions of integrable cosmological models with nonminimal coupling”, Phys. Part. Nucl. Lett. 14 (2017) 382–385; arXiv:1604.01959.ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    T. S. Pereira, C. Pitrou, and J.-Ph. Uzan, “Theory of cosmological perturbations in an anisotropic universe”, J. Cosmol. Astropart. Phys 0709, 006 (2007); arXiv:0707.0736.ADSCrossRefGoogle Scholar
  11. 11.
    I. Ya. Aref’eva, N. V. Bulatov, L. V. Joukovskaya, and S. Yu. Vernov, “The NEC violation and classical stability in the Bianchi I metric”, Phys. Rev. D 80, 083532 (2009); arXiv:0903.5264.ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    I. Ya. Aref’eva, L. V. Joukovskaya, and S. Yu. Vernov, “Dynamics in nonlocal linear models in the Friedmann- Robertson-Walker metric”, J. Phys. A 41, 304003 (2008); arXiv:0711.1364.MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    A. Yu. Kamenshchik, E. O. Pozdeeva, A. Tronconi, G. Venturi, and S. Yu. Vernov, Work in progress.Google Scholar
  14. 14.
    I. M. Khalatnikov and A. Yu. Kamenshchik, “A generalization of the Heckmann-Schucking cosmological solution”, Phys. Lett. B 553, 119 (2003); arXiv:grqc/0301022.ADSMathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    A. Yu. Kamenshchik and C. M. F. Mingarelli, “A generalized Heckmann-Schucking cosmological solution in the presence of a negative cosmological constant”, Phys. Lett. B 693, 213 (2010); arXiv:0909.4227.ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    P. Fre, A. Sagnotti, and A. S. Sorin, “Integrable scalar cosmologies, I: Foundations and links with string theory”, Nucl. Phys. B 877, 1028 (2013); arXiv:1307.1910.ADSMathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    T. Christodoulakis, T. Grammenos, C. Helias, P. G. Kevrekidis, and A. Spanou, “Decoupling of the general scalar field mode and the solution space for Bianchi type I and V cosmologies coupled to perfect fluid sources”, J. Math. Phys 47, 042505 (2006); arXiv:gr-qc/0506132, I. Bars, S. H. Chen, P. J. Steinhardt, and N. Turok, “Antigravity and the Big Crunch/Big Bang transition”, Phys. Lett. B 715, 278 (2012); arXiv:1112.2470, A. Yu. Kamenshchik, E. O. Pozdeeva, A. A. Starobinsky, A. Tronconi, G. Venturi, and S. Yu. Vernov, “Induced gravity, and minimally and conformally coupled scalar fields in Bianchi-I cosmological models”, arXiv:1710.02681.ADSMathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. Yu. Kamenshchik
    • 1
    • 2
  • E. O. Pozdeeva
    • 3
  • A. Tronconi
    • 1
  • G. Venturi
    • 1
  • S. Yu. Vernov
    • 3
  1. 1.Dipartimento di Fisica e Astronomia and INFNBolognaItaly
  2. 2.Landau Institute for Theoretical PhysicsRussian Academy of SciencesMoscowRussia
  3. 3.Skobeltsyn Institute of Nuclear PhysicsLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations