Advertisement

Physics of Particles and Nuclei

, Volume 48, Issue 5, pp 807–809 | Cite as

Form factors with q 2 = 0 and Grassmannians in N = 4 Sym theory

  • L. V. BorkEmail author
  • A. I. Onishchenko
The International Session-Conference of SNP PSD RAS “Physics of Fundamental Interactions” April 12–15, 2016, Dubna, Russia Session 2—Theory of Fundamental Interactions
  • 19 Downloads

Abstract

In this note we consider tree level form factors of operators from stress tensor supermultiplet with light like operator momentum q 2 = 0. The presentation of form factors in terms of the regulated integral over Grassmannian is given. The conjectured formula is verified by successfully reproducing known answers in the MHV and N k−2MHV, k ≥ 3 sectors as well as appropriate soft limit behavior.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Elvang and Yu-tin Huang, arXiv:1308.1697 [hep-th].Google Scholar
  2. 2.
    N. Arkani-Hamed, F. Cachazo, C. Cheung, and J. Kaplan, JHEP 1003, 020 (2010); arXiv:0907.5418 [hep-th].ADSCrossRefGoogle Scholar
  3. 3.
    N. Arkani-Hamed, J. L. Bourjaily, F. Cachazo, A. B. Goncharov, A. Postnikov, and J. Trnka, arXiv:1212.5605 [hep-th].Google Scholar
  4. 4.
    W. L. van Neerven, Z. Phys. C 30, 595 (1986).ADSCrossRefGoogle Scholar
  5. 5.
    A. Brandhuber, B. Spence, G. Travaglini, and G. Yang, “Form factors in N = 4 super Yang-Mills and periodic Wilson loops”, JHEP 1101, 134 (2011); arXiv:1011.1899 [hep-th].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    L. V. Bork, D. I. Kazakov, and G. S. Vartanov, JHEP 1102, 063 (2011); arXiv:1011.2440 [hep-th].ADSCrossRefGoogle Scholar
  7. 7.
    J. Maldacena and A. Zhiboedov, JHEP 1011, 104 (2010); arXiv:1009.1139 [hep-th].ADSCrossRefGoogle Scholar
  8. 8.
    A. Brandhuber, O. Gurdogan, R. Mooney, G. Travaglini, and Gang Yang, JHEP 1110, 046 (2011); arXiv:1107.5067 [hep-th].ADSCrossRefGoogle Scholar
  9. 9.
    L. V. Bork, D. I. Kazakov, and G. S. Vartanov, JHEP 1110, 133 (2011); arXiv:1107.5551 [hep-th].ADSCrossRefGoogle Scholar
  10. 10.
    L. V. Bork, JHEP 01, 049 (2013); arXiv:1203.2596 [hep-th].ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    B. Penante, B. Spence, G. Travaglini, and C. Wen, arXiv:1402.1300 [hep-th].Google Scholar
  12. 12.
    A. Brandhuber, G. Travaglini, and Gang Yang, arXiv:1201.4170 [hep-th].Google Scholar
  13. 13.
    J. M. Henn, S. Moch, and S. G. Naculich, JHEP 1112, 024 (2011); arXiv:1109.5057 [hep-th].ADSCrossRefGoogle Scholar
  14. 14.
    R. H. Boels, B. A. Kniehl, O. V. Tarasov, and Gang Yang, JHEP 1302, 063 (2013); arXiv:1211.7028 [hep-th].ADSCrossRefGoogle Scholar
  15. 15.
    L. Koster, V. Mitev, M. Staudacher, and M. Wilhelm, arXiv:1603.04471 [hep-th].Google Scholar
  16. 16.
    D. Chicherin and E. Sokatchev, arXiv:1605.01386 [hep-th].Google Scholar
  17. 17.
    L. V. Bork and A. I. Onishchenko, arXiv:1506.07551 [hep-th].Google Scholar
  18. 18.
    R. Frassek, D. Meidinger, D. Nandan, and M. Wilhelm, arXiv:1506.08192 [hep-th].Google Scholar
  19. 19.
    R. Britto, F. Cachazo, and Bo Feng, Nucl. Phys. B 715, 499–522 (2005); hep-th/0412308.ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.CFAR VNIIA, ITEPMoscowRussia
  2. 2.BLTP JINR, MIPT, SINP MSUMoscowRussia

Personalised recommendations