Advertisement

Physics of Particles and Nuclei

, Volume 48, Issue 5, pp 698–703 | Cite as

An advanced precision analysis of the SM vacuum stability

  • A. V. BednyakovEmail author
The International Session-Conference of SNP PSD RAS “Physics of Fundamental Interactions” April 12–15, 2016, Dubna, Russia Plenary Session

Abstract

The talk is devoted to the problem of stability of the Standard Model vacuum. The effective potential for the Higgs field, which can potentialy exhibit additional, deeper minimum, is considered as a convenient tool for addressing the problem. Different methods and approximations used to calculate the potential are considered. Special attention is paid to the renomalization-group approach that allows one to carry out three-loop analysis of the problem. By means of an explicit gauge-independent procedure the absolute stability bounds on the observed Higgs and top-quark masses are derived. The importance of high-order corrections is demonstrated. In addition, potential metastablity of the SM is discussed together with modifications of the analysis due to some New Physics.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Hambye and K. Riesselmann, “Matching conditions and Higgs mass upper bounds revisited”, Phys. Rev. D 55, 7255–7262 (1997).ADSCrossRefGoogle Scholar
  2. 2.
    S. R. Coleman and E. J. Weinberg, “Radiative corrections as the origin of spontaneous symmetry breaking”, Phys. Rev. D 7, 1888–1910 (1973).ADSCrossRefGoogle Scholar
  3. 3.
    R. Jackiw, “Functional evaluation of the effective potential”, Phys. Rev. D 9, 1686 (1974).ADSCrossRefGoogle Scholar
  4. 4.
    N. V. Krasnikov, “Restriction of the fermion mass in gauge theories of weak and electromagnetic interactions”, Yad. Fiz. 28, 549–551 (1978).Google Scholar
  5. 5.
    N. Nielsen, “On the gauge dependence of spontaneous symmetry breaking in gauge theories”, Nucl. Phys. B 101, 173 (1975).ADSCrossRefGoogle Scholar
  6. 6.
    C. Ford, I. Jack, and D. Jones, “The standard model effective potential at two loops”, Nucl. Phys. B 387, 373–390 (1992).ADSCrossRefGoogle Scholar
  7. 7.
    C. Froggatt and H. B. Nielsen, “Standard model criticality prediction: Top mass 173 ± 5-GeV and Higgs mass 135 ± 9-GeV”, Phys. Lett. B 368, 96–102 (1996).ADSCrossRefGoogle Scholar
  8. 8.
    S. P. Martin, “Two loop effective potential for a general renormalizable theory and softly broken supersymmetry”, Phys. Rev. D 65, 116003 (2002).ADSCrossRefGoogle Scholar
  9. 9.
    S. P. Martin, “Three-loop Standard Model effective potential at leading order in strong and top Yukawa couplings”, Phys. Rev. D 89 (1), 013003 (2014)ADSCrossRefGoogle Scholar
  10. 9a.
    S. P. Martin, “Four-loop Standard Model effective potential at leading order in QCD”, Phys. Rev. D 92 (5), 054029 (2015).ADSCrossRefGoogle Scholar
  11. 10.
    L. N. Mihaila, J. Salomon, and M. Steinhauser, “Gauge coupling beta functions in the Standard Model to three loops”, Phys. Rev. Lett. 108, 151602 (2012)ADSCrossRefGoogle Scholar
  12. 10a.
    A. Bednyakov, A. Pikelner, and V. Velizhanin, “Yukawa coupling beta-functions in the Standard Model at three loops”, Phys. Lett. B 722, 336–340 (2013)ADSCrossRefzbMATHGoogle Scholar
  13. 10b.
    K. Chetyrkin and M. Zoller, “β-function for the Higgs self-interaction in the Standard Model at three-loop level”, JHEP 1304, 091 (2013).ADSCrossRefGoogle Scholar
  14. 11.
    A. V. Bednyakov and A. F. Pikelner, “Four-loop strong coupling beta-function in the Standard Model”, Phys.Lett. B762 (2016) 151–156, https://inspirehep. net/record/1387530ADSCrossRefGoogle Scholar
  15. 11a.
    M. F. Zoller, “Top-Yukawa effects on the -function of the strong coupling in the SM at four-loop level”, JHEP 02, 095 (2016)ADSCrossRefGoogle Scholar
  16. 11b.
    K. G. Chetyrkin and M. F. Zoller, “Leading QCDinduced four-loop contributions to the β-function of the Higgs self-coupling in the SM and vacuum stability”, JHEP 1606(2016) 175, https://inspirehep.net/record/1441223.ADSCrossRefGoogle Scholar
  17. 12.
    A. V. Bednyakov, B. A. Kniehl, A. F. Pikelner, and O. L. Veretin, “Stability of the electroweak vacuum: Gauge independence and advanced precision”, Phys. Rev. Lett. 115 (20), 201802 (2015).ADSCrossRefGoogle Scholar
  18. 13.
    F. Jegerlehner, M. Y. Kalmykov, and B. A. Kniehl, “On the difference between the pole and the MS-bar masses of the top quark at the electroweak scale”, Phys. Lett. B 722, 123–129 (2013)ADSCrossRefzbMATHGoogle Scholar
  19. 13a.
    F. Jegerlehner, M. Y. Kalmykov, and B. A. Kniehl, “About the EW contribution to the relation between pole and MS-masses of the top-quark in the Standard Model”, 2013, arXiv:1307.4226 [hep-ph].zbMATHGoogle Scholar
  20. 14.
    S. Actis, A. Ferroglia, M. Passera, and G. Passarino, “Two-loop renormalization in the Standard Model, Part I: Prolegomena”, Nucl. Phys. B 777, 1–34 (2007).ADSCrossRefzbMATHGoogle Scholar
  21. 15.
    R. Hempfling and B. A. Kniehl, “On the relation between the fermion pole mass and MS Yukawa coupling in the Standard Model”, Phys. Rev. D 51, 1386–1394 (1995).ADSCrossRefGoogle Scholar
  22. 15a.
    B. A. Kniehl and O. L. Veretin, “Two-loop electroweak threshold corrections to the bottom and top Yukawa couplings”, Nucl. Phys. B 885, 459 (2014).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. 16.
    B. A. Kniehl, A. F. Pikelner, and O. L. Veretin, “A C++ library for the matching and running of the Standard Model parameters”, Comput. Phys. Commun. 206, 84–96 (2016).ADSMathSciNetCrossRefGoogle Scholar
  24. 17.
    G. Degrassi, S. Di Vita, J. Elias-Miro, J. R. Espinosa, G. F. Giudice, G. Isidori, and A. Strumia, “Higgs mass and vacuum stability in the Standard Model at NNLO”, JHEP 1208, 098 (2012)ADSCrossRefGoogle Scholar
  25. 17a.
    D. Buttazzo, G. Degrassi, P. P. Giardino, G. F. Giudice, F. Sala, A. Salvio, and A. Strumia, “Investigating the near-criticality of the Higgs boson”, JHEP 1312, 089 (2013).ADSCrossRefGoogle Scholar
  26. 18.
    K. Olive et al., “Particle data Group Collaboration, Review of particle physics”, Chin. Phys. C 38, 090001 (2014).ADSCrossRefGoogle Scholar
  27. 19.
    A. Andreassen, W. Frost, and M. D. Schwartz, “Consistent use of the Standard Model effective potential”, Phys. Rev. Lett. 113 (24), 241801 (2014).ADSCrossRefGoogle Scholar
  28. 20.
    J. R. Espinosa, G. F. Giudice, E. Morgante, A. Riotto, L. Senatore, A. Strumia, and N. Tetradis, “The cosmological Higgstory of the vacuum instability”, JHEP 09, 174 (2015).ADSCrossRefGoogle Scholar
  29. 21.
    J. R. Espinosa, “Vacuum stability and the Higgs boson”, PoS LATTICE2013 (2014), p. 010.Google Scholar
  30. 22.
    I. Yu. Kobzarev, L. B. Okun, and M. B. Voloshin, “Bubbles in metastable vacuum”, Sov. J. Nucl. Phys. 20, 644–646 (1975).Google Scholar
  31. 23.
    A. Andreassen, D. Farhi, W. Frost, and M. D. Schwartz, “Precision decay rate calculations in quantum field theory” (2016), arXiv:Phys.Rev. D95 (2017) no. 8, 085011, https://inspirehep.net/record/1449996.Google Scholar
  32. 24.
    A. Arbey et al., “Physics at the e+e linear collider”, Eur. Phys. J. C 75 (8), 371 (2015).ADSCrossRefGoogle Scholar
  33. 25.
    J. Kieseler, K. Lipka, and S. O. Moch, “Calibration of the top-quark Monte Carlo mass”, Phys. Rev. Lett. 116 (16), 162001 (2016).ADSCrossRefGoogle Scholar
  34. 26.
    F. Bezrukov and M. Shaposhnikov, “Why should we care about the top quark Yukawa coupling?” JETP 147, 3 (2015).Google Scholar
  35. 27.
    A. Eichhorn, H. Gies, J. Jaeckel, T. Plehn, M. M. Scherer, and R. Sondenheimer, “The Higgs mass and the scale of new physics”, JHEP 04, 022 (2015).ADSCrossRefGoogle Scholar
  36. 27a.
    P. Burda, R. Gregory, and I. Moss, “Gravity and the stability of the Higgs vacuum”, Phys. Rev. Lett. 115, 071303 (2015).ADSCrossRefGoogle Scholar
  37. 27b.
    L. Di Luzio, G. Isidori, and G. Ridolfi, “Stability of the electroweak ground state in the Standard Model and its extensions”, Phys. Lett. B 753, 150–160 (2016).ADSCrossRefGoogle Scholar
  38. 27c.
    L. V. Laperashvili, H. B. Nielsen, and C. R. Das, “New results at LHC confirming the vacuum stability and Multiple Point Principle”, Int. J. Mod. Phys. A 31 (08), 1650029 (2016).ADSMathSciNetCrossRefGoogle Scholar
  39. 28.
    F. Bezrukov, J. Rubio, and M. Shaposhnikov, “Living beyond the edge: Higgs inflation and vacuum metastability”, Phys. Rev. D 92 (8), 083512 (2015).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Joint Institute for Nuclear ResearchDubnaRussia
  2. 2.Dubna State UniversityDubnaRussia

Personalised recommendations