Physics of Particles and Nuclei

, Volume 48, Issue 4, pp 635–658 | Cite as

Hadron structure and spectroscopy at COMPASS. Overview of certain tasks

Article
  • 39 Downloads

Abstract

COMPASS is a fixed-target experiment at CERN with a long history and intense and diverse physics programme. In the Review we consider particular points of the existing and possible future programme: test of the chiral theory predictions with hadron beam, search for exotic charmonia, study of the EMC effect in the Drell–Yan process, search for production of bound \(p\overline p \) states and study of prompt photon production in hadronic interactions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Baum et al. (COMPASS Collab.), “COMPASS: A proposal for a common muon and proton apparatus for structure and spectroscopy”, CERN-SPSLC-96-14.Google Scholar
  2. 2.
    P. Abbon et al. (COMPASS Collab.), “COMPASS-II proposal”, CERN-SPSC-2010-014.Google Scholar
  3. 3.
    P. Abbon et al. (COMPASS Collab.), “The COMPASS experiment at CERN”, Nucl. Instrum. Methods A 577, 455–518 (2007).ADSCrossRefGoogle Scholar
  4. 4.
    P. Abbon et al. (COMPASS Collab.), “The COMPASS setup for physics with hadron beams”, Nucl. Instrum. Methods A 779, 69–115 (2015).ADSCrossRefGoogle Scholar
  5. 5.
    C. Quintans (for COMPASS Collab.), “Drell–Yan physics at COMPASS”, in Proc. of XXII International Workshop on Deep-Inelastic Scattering and Related Subjects (Warsaw, Poland, 2014), p. 6.Google Scholar
  6. 6.
    E. Fuchey (for COMPASS Collab.), “GPD program at COMPASS”, in Proc. of Conf. “QCD Evolution 2015” (Newport News Virginia, USA, Jefferson Lab. (JLAB), 2015), p. 9.Google Scholar
  7. 7.
    Yu. M. Antipov, V. A. Batarin, V. A. Bessubov, N. P. Budanov, Yu. P. Gorin, S. P. Denisov, I. V. Kotov, A. A. Lebedev, A. I. Petrukhin, S. A. Polovnikov, V. N. Roinishvili, D. A. Stoyanova, P. A. Kulinich, G. V. Mecel’macher, A. G. Ol’shevski, and V. I. Travkin, “Measurement of meson polarizability in pion Compton effect”, Phys. Lett. B 121, 445–448 (1983).ADSCrossRefGoogle Scholar
  8. 8.
    Yu. M. Antipov, V. A. Batarin, V. A. Bessubov, N. P. Budanov, Yu. P. Gorin, S. P. Denisov, I. V. Kotov, P. A. Kulinich, A. A. Lebedev, and G. V. Mecel’macher, “Experimental evaluation of the sum of the electric and magnetic polarizabilities of pions”, Z. Phys. C 26, 495 (1985).ADSCrossRefGoogle Scholar
  9. 9.
    T. A. Aibergenov, P. S. Baranov, O. D. Beznisko, S. N. Cherepniya, L. V. Filkov, A. A. Nafikov, A. I. Osadchii, V. G. Raevsky, L. N. Shtarkov, and E. I. Tamm, “Radiative photoproduction of pions and pion Compton scattering”, Czech. J. Phys. B 36, 948–951 (1986).ADSCrossRefGoogle Scholar
  10. 10.
    J. Ahrens, V. M. Alexeev, J. R. M. Annand, H. J. Arends, R. Beck, G. Caselotti, S. N. Cherepnya, D. Drechsel, L. V. Fil’kov, K. Föhl, I. Giller, P. Grabmayr, T. Hehl, D. Hornidge, V. L. Kashevarov, M. Kotulla, D. Krambrich, B. Krusche, M. Lang, J.C. McGeorge, I. J. D. MacGregor, V. Metag, M. Moinester, R. Novotny, M. Pfeiffer, M. Rost, S. Schadmand, S. Scherer, A. Thomas, C. Unkmeir, and Th. Walcher, “Measurement of π + the γpγπ + n reaction”, Eur. Phys. J. A 23, 113–127 (2005).ADSCrossRefGoogle Scholar
  11. 11.
    C. Berger et al. (PLUTO Collab.), “Pion pair production in photon–photon interactions”, Z. Phys. C 26, 199 (1984).ADSGoogle Scholar
  12. 12.
    A. Courau, A. Falvard, J. Haïssinski, J. Jousset, B.Michel, J. C. Montret, A. Cordier, B. Delcourt, and F. Mane, “Lepton and pion pair production in collisions measured near the threshold at DCI”, Nucl. Phys. B 271, 1–20 (1986).ADSCrossRefGoogle Scholar
  13. 13.
    Z. Ajaltoni et al. (DM2 Collab.), in Proc. of the VII International Workshop on Photon-Photon Collisions (Paris, 1986).Google Scholar
  14. 14.
    J. Boyer, F. Butler, G. Gidal, G. Abrams, D. Amidei, A. R. Baden, M. S. Gold, L. Golding, G. Goldhaber, J. Haggerty, D. Herrup, I. I. Juricic, J. A. Kadyk, M. E. Levi, M. E. Nelson, P. C. et al., “Two photon production of pion pairs”, Phys. Rev. D 42, 1350–1367 (1990).ADSCrossRefGoogle Scholar
  15. 15.
    D. Babusci, S. Bellucci, G. Giordano, G. Matone, A. M. Sandorfi, and M. A. Moinester, “Chiral symmetry and pion polarizabilities”, Phys. Lett. B 277, 158–162 (1992).ADSCrossRefGoogle Scholar
  16. 16.
    L. V. Fil’kov and V. L. Kashevarov, “Determination of π ± meson polarizabilities from the process”, Phys. Rev. C 73, 035210 (2006).ADSCrossRefGoogle Scholar
  17. 17.
    A. E. Kaloshin and V. V. Serebryakov, “π+ and π0 and polarizabilities from γγ → ππ data on the base of S matrix approach”, Z. Phys. C 64, 689–694 (1994).ADSGoogle Scholar
  18. 18.
    J. Gasser, M. A. Ivanov, and M. E. Sainio, “Revisiting γγ → π+π at low energies”, Nucl. Phys. B 745, 84–108 (2006).ADSCrossRefGoogle Scholar
  19. 19.
    A. Guskov, “Measurement of the charged-pion polarisability at COMPASS”, in Proc. of the European Physical Society Conference on High Energy Physics (Vienna, Austria, 2015), p. 5.Google Scholar
  20. 20.
    C. Adolph et al. (COMPASS Collab.), “Measurement of the charged-pion polarizability”, Phys. Rev. Lett. 114, 062002 (2015).ADSCrossRefGoogle Scholar
  21. 21.
    M. Bychkov, D.Pocanic, B. A. VanDevender, V. A. Baranov, W. Bertl, Yu. M. Bystritsky, E. Frlež, V. A. Kalinnikov, N. V. Khomutov, A. S. Korenchenko, S.M. Korenchenko, M. Korolija, T. Kozlowski, N. P. Kravchuk, N. A. Kuchinsky et al., “New precise measurement of the pion weak form factors in π+e +νγ decay”, Phys. Rev. Lett. 103, 051802 (2009).ADSCrossRefGoogle Scholar
  22. 22.
    A. I. L’vov, “Pion polarizabilities in the sigma model with quarks”, Sov. J. Nucl. Phys. 34, 289 (1981).Google Scholar
  23. 23.
    M. K. Volkov and D. Ebert, “Pion polarizability in a chiral quark model”, Sov. J. Nucl. Phys. 34, 104 (1981); Phys. Lett. B 101, 252–254 (1981).Google Scholar
  24. 24.
    M. K. Volkov and A. A. Osipov, “Polarizability of pions and kaons in superconductor quark model”, Sov. J. Nucl. Phys. 41, 659 (1985).Google Scholar
  25. 25.
    M. A. Ivanov and T. Mizutani, “Pion and kaon polarizabilities in the quark confinement model”, Phys. Rev. D 45, 1580 (1992).ADSCrossRefGoogle Scholar
  26. 26.
    L. V. Filkov, I. Guiasu, and E. E. Radescu, “Pion polarizabilities from backward and fixed-u sum rules”, Phys. Rev. D 26, 3146 (1982).ADSCrossRefGoogle Scholar
  27. 27.
    L. V. Filkov and V. L. Kashevarov, “Determination of π± meson polarizabilities from the γγ → π+π process”, Phys. Rev. C 73, 035210 (2006).ADSCrossRefGoogle Scholar
  28. 28.
    W. Detmold, B. C. Tiburzi, and A. Walker-Loud, “Extracting electric polarizabilities from lattice QCD”, Phys. Rev. D 79, 094505 (2009).ADSCrossRefGoogle Scholar
  29. 29.
    M. A. Ivanov, “Pion polarizabilities: Theory vs. experiment”, Int. J. Mod. Phys. Conf. Ser. 39, 1560104 (2015).CrossRefGoogle Scholar
  30. 30.
    B. R. Holstein and S. Scherer, “Hadron polarizabilities”, Ann. Rev. Nucl. Part. Sci. 64, 51–81 (2014).ADSCrossRefGoogle Scholar
  31. 31.
    B. Pasquini, D. Drechsel, and M. Vanderhaeghen, “Nucleon polarizabilities: Theory”, Eur. Phys. J. ST. 198, 269–285 (2011).CrossRefGoogle Scholar
  32. 32.
    J. Friedrich, “Chiral dynamics in pion–photon reactions”, CERN-THESIS-2012-333.Google Scholar
  33. 33.
    A. Guskov, “The Primakoff reaction study for pion polarizability measurement at COMPASS”, Phys. Part. Nucl. Lett. 7 (3), 317–330 (2010).CrossRefGoogle Scholar
  34. 34.
    F. Guerrero and J. Prades, “Kaon polarizabilities in chiral perturbation theory”, Phys. Lett. B 405, 341–346 (1997).ADSCrossRefGoogle Scholar
  35. 35.
    G. Backenstoss, A. Bamberger, I. Bergström, T. Bunaciu, J. Egger, R. Hagelberg, S. Hultberg, H. Koch, Y. Lynen, H. G. Ritter, A. Schwitter, and L. Tauscher, “K mass and K polarizability from kaonic atoms”, Phys. Lett. B 43, 431–436 (1973).ADSCrossRefGoogle Scholar
  36. 36.
    M. V. Terentev, “Structure of observable amplitudes for photon—“soft” pion interaction”, Sov. J. Nucl. Phys. 15, 665–674 (1972).Google Scholar
  37. 37.
    Y. M. Antipov, V. A. Batarin, V. A. Bezzubov, N. P. Budanov, Yu. P. Gorin, Yu. A. Gornushkin, S. P.Denisov, S. V. Klimenko, I. V. Kotov, P. A. Kulinich, A. A. Lebedev, G. Mitselmakher, A. G. Olszewski, F. Palombo, A. I. Petrukhin et al., “Investigation of γ → 3π chiral anomaly during pion pair production by pions in the nuclear Coulomb field”, Phys. Rev. D 36, 21 (1987).ADSCrossRefGoogle Scholar
  38. 38.
    N. Kaiser and J. M. Friedrich, “Cross sections for lowenergy πγ reactions”, Eur. Phys. J. A 36, 181 (2008).ADSCrossRefGoogle Scholar
  39. 39.
    C. Adolph et al. (COMPASS Collab.), “First measurement of chiral dynamics in πγ → πππ+”, Phys. Rev. Lett. 108, 192001 (2012).ADSCrossRefGoogle Scholar
  40. 40.
    K. A. Olive et al. (Particle Data Group), “Review of particle physics”, Chin. Phys. C 38, 090001 (2014).ADSCrossRefGoogle Scholar
  41. 41.
    S. L. Adler, “Axial-vector vertex in spinor electrodynamics”, Phys. Rev. 177, 2426 (1969).ADSCrossRefGoogle Scholar
  42. 42.
    K. Kampf and B. Moussallam, “Chiral expansions of the lifetime”, Phys. Rev. D 79, 076005 (2009).ADSCrossRefGoogle Scholar
  43. 43.
    A. M. Bernstein and B. R. Holstein, “Neutral pion lifetime measurements and the QCD chiral anomaly”, Rev. Mod. Phys. 85, 49 (2013).ADSCrossRefGoogle Scholar
  44. 44.
    I. Larin et al. (PrimEx Collab.), “A new measurement of the π0 radiative decay width”, Phys. Rev. Lett. 106, 162303 (2011).ADSCrossRefGoogle Scholar
  45. 45.
    H. W. Atherton, C. Bovet, P. Coet, R. Desalvo, N. Doble, R. Maleyran, E. W. Anderson, G. von Dardel, K. Kulka, M. Boratav, J. W. Cronin, and B. D. Milliken, “Direct measurement of the lifetime of the neutral pion”, Phys. Lett. B 158, 81–84 (1985).ADSCrossRefGoogle Scholar
  46. 46.
    M. Gell-Mann, “A schematic model of baryons and mesons”, Phys. Lett. 8, 214–215 (1964).ADSMathSciNetCrossRefGoogle Scholar
  47. 47.
    G. Zweig, “An model for strong interaction symmetry and its breaking”, CERN-TH-401, 1964, p. 24.Google Scholar
  48. 48.
    S. K. Choi et al. (Belle Collab.), “Observation of a narrow charmonium-like state in exclusive B +K +π+π J /ψ decays”, Phys. Rev. Lett. 91, 262001 (2003).ADSCrossRefGoogle Scholar
  49. 49.
    H.-X. Chen, W. Chen, X. Liu, and S.-L. Zhuet, “The hidden-charm pentaquark and tetraquark states”, Phys. Rep. 639, 1–122 (2016).ADSMathSciNetCrossRefGoogle Scholar
  50. 50.
    A. Hosaka, T. Iijima, K. Miyabayashi, Y. Sakai, and S. Yasuiet, “Exotic hadrons with heavy flavors -X, Y, Z and related states”, J-PARC-TH-0046, 2016.Google Scholar
  51. 51.
    X.-H. Liu, Zhao Qiang, and Frank E. Close, “Search for tetraquark candidate Z(4430) in meson photoproduction”, Phys. Rev. D 77, 094005 (2008).ADSCrossRefGoogle Scholar
  52. 52.
    J. He and X. Liu, “Discovery potential for charmonium- like state Y(3940) by the meson photoproduction”, Phys. Rev. D 80, 114007 (2009).ADSCrossRefGoogle Scholar
  53. 53.
    Q.-Y. Lin, X. Liu, and H.-S. Xu, “Probing charmoniumlike state X(3915) through meson photoproduction”, Phys. Rev. D 89, 034016 (2014).ADSCrossRefGoogle Scholar
  54. 54.
    Q.-Y. Lin, X. Liu, and H.-S. Xu, “Charged charmoniumlike state (3900) via meson photoproduction”, Phys. Rev. D 88, 114009 (2013).ADSCrossRefGoogle Scholar
  55. 55.
    X.-Y. Wang, X.-R. Chen, and A. Guskov, “Photoproduction of the charged charmoniumlike (4200)”, Phys. Rev. D 92, 094017 (2015).ADSCrossRefGoogle Scholar
  56. 56.
    C. Adolph et al. (COMPASS Collab.), “Search for exclusive photoproduction of (3900) at COMPASS”, Phys. Lett. B 742, 330 (2015).ADSCrossRefGoogle Scholar
  57. 57.
    O. Denisov and G. Mallot, “COMPASS status report 2016”, CERN-SPSC-2016-025, SPSC-SR-190.Google Scholar
  58. 58.
    R. Aaij et al. (LHCb Collab.), “Observation of J p resonances consistent with pentaquark states in p decays”, Phys. Rev. Lett. 115, 072001 (2015).ADSCrossRefGoogle Scholar
  59. 59.
    R. Aaij et al. (LHCb Collab.), “Evidence for exotic hadron contributions to decays”, Phys. Rev. Lett. 117, 082003 (2016).ADSMathSciNetCrossRefGoogle Scholar
  60. 60.
    Q. Wang, X.-H. Liu, and Q. Zhao, “Photoproduction of hidden charm pentaquark states (4380) and (4450)”, Phys. Rev. D 92, 034022 (2015).ADSCrossRefGoogle Scholar
  61. 61.
    M. Karliner and J. L. Rosner, “Photoproduction of exotic baryon resonances”, Phys. Lett. B 752, 329–332 (2016).ADSCrossRefGoogle Scholar
  62. 62.
    Y. Huang, J. He, X. Liu, H. F. Zhang, J. J. Xie, and X. R. Chen, “Pion-induced production of the (3900) off a nuclear target”, Phys. Rev. D 93, 034022 (2016).ADSCrossRefGoogle Scholar
  63. 63.
    M. Arneodo, “Nuclear effects in structure functions”, Phys. Rep. 240, 301–393 (1994).ADSCrossRefGoogle Scholar
  64. 64.
    D. Geesaman, K. Saito, and A. W. Thomas, “The nuclear EMC effect”, Annu. Rev. Nucl. Part. Sci. 45, 337–390 (1995).ADSCrossRefGoogle Scholar
  65. 65.
    P. R. Norton, “The EMC effect”, Rep. Prog. Phys. 66, 1253–1297 (2006).ADSCrossRefGoogle Scholar
  66. 66.
    S. Malace, D. Gaskell, D. W. Higinbotham, and I. Cloet, “The Challenge of the EMC effect: Existing data and future directions”, Int. J. Mod. Phys. E 23, 1430013 (2014).ADSCrossRefGoogle Scholar
  67. 67.
    K. Rith, “Present status of the EMC effect”, arXiv:1402.5000v1 [hep-ex] (2014).Google Scholar
  68. 68.
    I. C. Cloet, W. Bentz, and A. W. Thomas, “Isovector EMC effect explains the NuTeV anomaly”, Phys. Rev. Lett. 102, 252301 (2009).ADSCrossRefGoogle Scholar
  69. 69.
    P. L. McGaughey, J. M. Moss, and J. C. Peng, “Highenergy hadron-induced dilepton production from nucleons and nuclei”, Annu. Rev. Nucl. Part. Sci. 49, 217 (1999).ADSCrossRefGoogle Scholar
  70. 70.
    M. A. Vasiliev et al. (FNAL E866/NuSea Collab.), “Parton energy loss limits and shadowing in Drell–Yan dimuon production”, Phys. Rev. Lett. 83, 2304–2307 (1999).ADSCrossRefGoogle Scholar
  71. 71.
    R. G. Arnold et al. (SLAC-E139 Collab.), “Measurements of the A-dependence of deep inelastic electron scattering from nuclei”, Phys. Rev. Lett. 52, 727 (1984).ADSCrossRefGoogle Scholar
  72. 72.
    J. Gomez et al. (SLAC-E139 Collab.), “Measurement of the A dependence of deep-inelastic electron scattering”, Phys. Rev. D 49, 4348 (1994).ADSCrossRefGoogle Scholar
  73. 73.
    S. Dasu et al. (SLAC-E140 Collab.), “Measurement of the difference in R = l/ t and in deep inelastic eD, e Fe and e Au scattering”, Phys. Rev. Lett. 60, 2591 (1988).ADSCrossRefGoogle Scholar
  74. 74.
    S. Dasu et al. (SLAC-E140 Collab.), “Measurement of kinematic and nuclear dependence of R = / in deep inelastic electron scattering”, Phys. Rev. D 49, 5641–5670 (1994).ADSCrossRefGoogle Scholar
  75. 75.
    J. J. Aubert et al. (EMC Collab.), “The ratio of the nucleon structure functions for iron and deuterium”, Phys. Lett. B 123, 275–278 (1983).ADSCrossRefGoogle Scholar
  76. 76.
    J. J. Aubert et al. (EMC Collab.), “Measurements of the nucleon structure functions in deep inelastic muon scattering from deuterium and comparison with those from hydrogen and iron”, Nucl. Phys. B 293, 740–786 (1987).ADSCrossRefGoogle Scholar
  77. 77.
    J. Ashman et al. (EMC Collab.), “Measurement of the ratios of deep inelastic muon-nucleus cross sections on various nuclei compared to deuterium”, Phys. Lett. B 202, 603–610 (1988).ADSCrossRefGoogle Scholar
  78. 78.
    G. Bari et al. (BCDMS Collab.), “A measurement of nuclear effects in deep inelastic muon scattering on deuterium, nitrogen and iron targets”, Phys. Lett. B 163, 282 (1985).ADSCrossRefGoogle Scholar
  79. 79.
    A. C. Benvenuti et al. (BCDMS Collab.), “Nuclear effects in deep inelastic muon scattering on deuterium and iron targets”, Phys. Lett. B 189, 483 (1987).ADSCrossRefGoogle Scholar
  80. 80.
    P. Amaudruz et al. (NMC Collab.), “Precision measurement of the structure function ratios F2 (He)/F2 (D), F2 (C)/F2 (D) and F2 (Ca)/F2 (D)”, Z. Phys. C 51, 387–394 (1991).CrossRefGoogle Scholar
  81. 81.
    P. Amaudruz et al. (NMC Collab.), “Precision measurement of structure function ratios for Li-6, C-12 and Ca-40”, Z. Phys. C 53, 73–78 (1992).ADSCrossRefGoogle Scholar
  82. 82.
    P. Amaudruz et al. (NMC Collab.), “Measurements of and in deep inelastic muon scattering”, Phys. Lett. B 294, 120–126 (1992).ADSCrossRefGoogle Scholar
  83. 83.
    P. Amaudruz et al. (NMC Collab.), “A re-evaluation of the nuclear structure function ratios for D, He, 6Li, C and Ca”, Nucl. Phys. B 441, 3–11 (1995).ADSCrossRefGoogle Scholar
  84. 84.
    M. Arneodo et al. (NMC Collab.), “The structure function ratios and at small x”, Nucl. Phys. B 441, 12–30 (1995).ADSCrossRefGoogle Scholar
  85. 85.
    M. Arneodo et al. (NMC Collab.), “The A dependence of the nuclear structure function ratios”, Nucl. Phys. B 481, 3–22 (1996).ADSGoogle Scholar
  86. 86.
    M. Arneodo et al. (NMC Collab.), “The dependence of the structure function ratio and the difference deep inelastic muon scattering”, Nucl. Phys. B 481, 23–29 (1996).ADSGoogle Scholar
  87. 87.
    D. M. Alde et al. (FNAL-E772 Collab.), “Nuclear dependence of dimuon production at 800-GeV. FNAL-772 experiment”, Phys. Rev. Lett. 64, 2479–2482 (1990).ADSCrossRefGoogle Scholar
  88. 88.
    M. A. Vasiliev et al. (FNAL-E866 Collab.), “Parton energy loss limits and shadowing in Drell–Yan dimuon production”, Phys. Rev. Lett. 83, 2304–2307 (1999).ADSCrossRefGoogle Scholar
  89. 89.
    M. R. Adams et al. (FNAL-E665 Collab.), “Saturation of shadowing at very low”, Phys. Rev. Lett. 68, 3266–3269 (1992).ADSCrossRefGoogle Scholar
  90. 90.
    M. R. Adams et al. (FNAL-E665 Collab.), “Shadowing in inelastic scattering of muons on carbon, calcium and lead at low”, Z. Phys. C 67, 403–410 (1995).ADSCrossRefGoogle Scholar
  91. 91.
    A. Airapetian et al. (HERMES Collab.), “Nuclear effects on R = / in deep inelastic scattering”, Phys. Lett. B 567, 339–346 (2003).ADSCrossRefGoogle Scholar
  92. 92.
    J. Seely et al. (JLAB-E03103 Collab.), “New measurements of the EMC effect in very light nuclei”, Phys. Rev. Lett. 103, 202301 (2009).ADSCrossRefGoogle Scholar
  93. 93.
    J. Badier et al. (NA3 Collab.), “Test of nuclear effects in hadronic dimuon production”, Phys. Lett. B 104, 335–338 (1981).ADSCrossRefGoogle Scholar
  94. 94.
    P. Bordalo et al. (NA10 Collab.), “Nuclear effects on the nucleon structure functions in hadronic high-mass dimuon production”, Phys. Lett. B 193, 368–372 (1987).ADSCrossRefGoogle Scholar
  95. 95.
    D. Dutta, J.-C. Peng, I. C. Cloet, and D. Gaskell, “Pion-induced Drell–Yan processes and the flavordependent EMC effect”, Phys. Rev. C 83, 042201 (2011).ADSCrossRefGoogle Scholar
  96. 96.
    J. Z. Bai et al. (BES Collab.), “Observation of a near threshold enhancement in the p mass spectrum from radiative J/ decays”, Phys. Rev. Lett. 91, 022001 (2003).ADSCrossRefGoogle Scholar
  97. 97.
    M. Ablikim et al. (BES Collab.), “Study of J/ decaying into”, Eur. Phys. J. C 53, 15 (2008).ADSCrossRefGoogle Scholar
  98. 98.
    M. Ablikim et al. (BES Collab.), “Measurement of radiative decays”, Phys. Rev. Lett. 99, 011802 (2007).ADSCrossRefGoogle Scholar
  99. 99.
    M. Ablikim et al. (BESIII Collab.), “Observation of a mass threshold enhancement in decay”, Chin. Phys. C 34, 4 (2010).Google Scholar
  100. 100.
    J. P. Alexander et al. (CLEO Collab.), “Study of decays to, and and search for threshold enhancements”, Phys. Rev. D 82, 092002 (2010).ADSCrossRefGoogle Scholar
  101. 101.
    M. Ablikim et al. (BESIII Collab.), “Spin-parity analysis of mass threshold structure in and radiative decays”, Phys. Rev. Lett. 108, 112003 (2012).ADSCrossRefGoogle Scholar
  102. 102.
    M. Ablikim et al. (BESIII Collab.), “Confirmation of the and observation of the resonances and in”, Phys. Rev. Lett. 106, 072002 (2011).ADSCrossRefGoogle Scholar
  103. 103.
    M. Ablikim et al. (BESIII Collab.), “Observation of an anomalous line shape of the mass spectrum near the mass threshold in”, Phys. Rev. Lett. 117, 042002 (2016).ADSCrossRefGoogle Scholar
  104. 104.
    M. Ablikim et al. (BESIII Collab.), “Observation and spin-parity determination of the X(1835) in”, Phys. Rev. Lett. 115 (9), 091803 (2015).ADSCrossRefGoogle Scholar
  105. 105.
    J. J. Manak et al. (E852 Collab.), “Partial-wave analysis of the system produced in the reaction at 18-GeV/c”, Phys. Rev. D 62, 012003 (2000).ADSCrossRefGoogle Scholar
  106. 106.
    D. Barberis et al. (WA102 Collab.), “A study of the channel produced in central pp interactions at 450-GeV/c”, Phys. Lett. B 471, 435–439 (2000).CrossRefGoogle Scholar
  107. 107.
    A. Kumar, K. Ranjan, M. K. Jha, A. Bhardwaj, B. M. Sodermark, and R. K. Shivpuri, “Study of parton smearing effects in direct photon production at the Fermilab Tevatron”, Phys. Rev. D 68, 014017 (2003).ADSCrossRefGoogle Scholar
  108. 108.
    R. M. Baltrusaitis, M. E. Binkley, B. Cox, T. Kondo, C. T. Murphy, W. Yang, L. Ettlinger, M. S. Goodman, J. A. J. Matthews, and J. Nagy, “A search for direct photon production in 200 and 300 GeV/c protonberyllium interactions”, Phys. Lett. B 88, 372–378 (1979).ADSCrossRefGoogle Scholar
  109. 109.
    M. McLaughlin et al. (FNAL E629 Collab.), “Inclusive production of direct photons in 200-GeV/c collisions”, Phys. Rev. Lett. 51, 971 (1983).ADSCrossRefGoogle Scholar
  110. 110.
    J. Badier et al. (NA3 Collab.), “Direct photon production from pions and protons at 200-GeV/c”, Z. Phys. C 31, 341 (1986).ADSCrossRefGoogle Scholar
  111. 111.
    C. De Marzo et al. (NA24 Collab.), “Measurement of direct photon production at large transverse momentum in p, p, and pp collisions at 300 GeV/c”, Phys. Rev. D 36, 8 (1987).ADSCrossRefGoogle Scholar
  112. 112.
    M. Bonesini et al. (WA70 Collab.), “Production of high transverse momentum prompt photons and neutral pions in proton proton interactions at 280-GeV/c”, Z. Phys. C 38, 371 (1988).ADSCrossRefGoogle Scholar
  113. 113.
    M. Bonesini et al. (WA70 Collab.), “High transverse momentum prompt photon production by and on protons at 280-GeV/c”, Z. Phys. C 37, 535 (1988).ADSCrossRefGoogle Scholar
  114. 114.
    D. L. Adams et al. (FNAL E704 Collab.), “Measurement of single spin asymmetry for direct photon production in pp collisions at 200-GeV/c”, Phys. Lett. B 345, 569–75 (1995).ADSCrossRefGoogle Scholar
  115. 115.
    G. Alverson et al. (FNAL E706 Collab.), “Production of direct photons and neutral mesons at large transverse momenta by and p beams at 500 GeV/c”, Phys. Rev D 48, 5 (1993).ADSCrossRefGoogle Scholar
  116. 116.
    G. Ballocchi et al. (UA6 Collab.), “Determination of and the gluon distribution using direct photon production in pp and pp collisions”, Phys. Lett. B 317, 250–256 (1993).ADSCrossRefGoogle Scholar
  117. 117.
    G. Ballocchi et al. (UA6 Collab.), “Direct photon cross sections in proton-proton and antiproton-proton interactions at GeV”, Phys. Lett. B 436, 222–230 (1998).ADSCrossRefGoogle Scholar
  118. 118.
    E. Annassontzis, A. Karabarbounis, C. Kourkoumelis, L. K. Resvanis, R. B. Palmer, D. C. Rahm, P. Rehak, I. Stumer, C. W. Fabjan, D. Lissauer, I. Mannelli, W. Molzon, P. Mouzourakis, A. Nappi, and W. Willis, “High p(t) direct photon production in pp collisions”, Z. Phys. C 13, 277–289 (1982).ADSCrossRefGoogle Scholar
  119. 119.
    A. L. S. Angelis et al. (CERN-Michigan State-Oxford-Rockefeller Collab.), “Direct photon production at the CERN ISR”, Nucl. Phys. B 327, 541–568 (1989).ADSCrossRefGoogle Scholar
  120. 120.
    T. Akesson et al. (Axial Field Spectrometer Collab.), “High and production, inclusive and with a recoil hadronic jet, in pp collisions at = 63 GeV”, Sov. J. Nucl. Phys. 51, 836–845 (1990).Google Scholar
  121. 121.
    J. Huston et al. (CTEQ Collab.), “Study of the uncertainty of the gluon distribution”, Phys. Rev. D 58, 114034 (1998).ADSCrossRefGoogle Scholar
  122. 122.
    P. Aurenche, M. Fontannaz, J. Ph. Guillet, B. Kniehl, E. Pilon, and M. Werlen, “A critical phenomenological study of inclusive photon production in hadronic collisions”, Eur. Phys. J. C 9, 107–119 (1999).ADSCrossRefGoogle Scholar
  123. 123.
    P. Aurenche, M. Fontannaz, J.-P. Guillet, E. Pilon, and M. Werlen, “A new critical study of photon production in hadronic collisions”, Phys. Rev. D 73, 094007 (2006).ADSCrossRefGoogle Scholar
  124. 124.
    L. Apanasevich et al. (FNAL E706 Collab.), “Evidence for parton effects in high-particle production”, Phys. Rev. Lett. 81, 2642 (1998).ADSCrossRefGoogle Scholar
  125. 125.
    E. Laenen, G. Sterman, and W. Vogelsang, “Higherorder QCD corrections in prompt photon production”, Phys. Rev. Lett. 84, 4296 (2000).ADSCrossRefGoogle Scholar
  126. 126.
    S. Gupta and K. Sridhar, “Direct photon production and the gluon EMC effect”, Phys. Lett. B 197, 259–262 (1987).ADSCrossRefGoogle Scholar
  127. 127.
    F. Arleo and T. Gousset, “Measuring gluon shadowing with prompt photons at RHIC and LHC”, Phys. Lett. B 660, 181–187 (2008).ADSCrossRefGoogle Scholar
  128. 128.
    J. Badier et al. (NA3 Collab.), “Direct photon pair production from pions and protons at 200 GeV/c”, Phys. Lett. B 164, 184–188 (1985).ADSCrossRefGoogle Scholar
  129. 129.
    E. Bonvin et al. (WA70 Collab.), “Double prompt photon production at high transverse momentum by on protons at 280-GeV/c”, Z. Phys. C 41, 591 (1989).CrossRefGoogle Scholar
  130. 130.
    C. De Marzo et al. (NA24 Collab.), “Measurement of the production of high-mass, and pairs in p, p, and pp collisions at 300 GeV/c”, Phys. Rev. D 42, 748 (1990).ADSCrossRefGoogle Scholar
  131. 131.
    W. Vogelsang and M. R. Whalley, “A compilation of data on single and double prompt photon production in hadron–hadron interactions”, J. Phys. G. Nucl. Part. Phys. V 23, 1 (1997).ADSCrossRefGoogle Scholar
  132. 132.
    N. Anfimov, V. Anosov, J. Barth, V. Chalyshev, I. Chirikov-Zorin, M. Dziewiecki, D. Elsner, V. Frolov, F. Frommberger, A. Guskov, W. Hillert, F. Klein, Z. Krumshteyn, R. Kurjata, J. Marzec et al., “Tests of the module array of the ECAL0 electromagnetic calorimeter for the COMPASS experiment with the electron beam at ELSA”, Phys. Part. Nucl. Lett. 12 (4), 566–569 (2015).CrossRefGoogle Scholar
  133. 133.
    C. Albajar et al. (UA1 Collab.), “Low mass dimuon production at the CERN proton–antiproton collider”, Phys. Lett. B 209, 397–406 (1988).ADSCrossRefGoogle Scholar
  134. 134.
    E. L. Berger, L. E. Gordon, and M. Klasen, “Massive lepton pairs as a prompt photon surrogate”, Phys. Rev. D 58, 074012 (1998).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Joint Institute for Nuclear ResearchDubnaRussia

Personalised recommendations