Physics of Particles and Nuclei

, Volume 47, Issue 6, pp 995–1002 | Cite as

Measurement of neutrino flux from the primary proton–proton fusion process in the Sun with Borexino detector

  • O. Yu. Smirnov
  • M. Agostini
  • S. Appel
  • G. Bellini
  • J. Benziger
  • D. Bick
  • G. Bonfini
  • D. Bravo
  • B. Caccianiga
  • F. Calaprice
  • A. Caminata
  • P. Cavalcante
  • A. Chepurnov
  • K. Choi
  • D. D’Angelo
  • S. Davini
  • A. Derbin
  • L. Di Noto
  • I. Drachnev
  • A. Empl
  • A. Etenko
  • K. Fomenko
  • D. Franco
  • F. Gabriele
  • C. Galbiati
  • C. Ghiano
  • M. Giammarchi
  • M. Goeger-Neff
  • A. Goretti
  • M. Gromov
  • C. Hagner
  • E. Hungerford
  • Aldo Ianni
  • Andrea Ianni
  • K. Jedrzejczak
  • M. Kaiser
  • V. Kobychev
  • D. Korablev
  • G. Korga
  • D. Kryn
  • M. Laubenstein
  • B. Lehnert
  • E. Litvinovich
  • F. Lombardi
  • P. Lombardi
  • L. Ludhova
  • G. Lukyanchenko
  • I. Machulin
  • S. Manecki
  • W. Maneschg
  • S. Marcocci
  • E. Meroni
  • M. Meyer
  • L. Miramonti
  • M. Misiaszek
  • P. Mosteiro
  • V. Muratova
  • B. Neumair
  • L. Oberauer
  • M. Obolensky
  • F. Ortica
  • K. Otis
  • L. Pagani
  • M. Pallavicini
  • L. Papp
  • L. Perasso
  • A. Pocar
  • G. Ranucci
  • A. Razeto
  • A. Re
  • A. Romani
  • R. Roncin
  • N. Rossi
  • S. Schönert
  • D. Semenov
  • H. Simgen
  • M. Skorokhvatov
  • A. Sotnikov
  • S. Sukhotin
  • Y. Suvorov
  • R. Tartaglia
  • G. Testera
  • J. Thurn
  • M. Toropova
  • E. Unzhakov
  • R. B. Vogelaar
  • F. von Feilitzsch
  • H. Wang
  • S. Weinz
  • J. Winter
  • M. Wojcik
  • M. Wurm
  • Z. Yokley
  • O. Zaimidoroga
  • S. Zavatarelli
  • K. Zuber
  • G. Zuzel
The International Workshop on Prospects of Particle Physics: “Neutrino Physics and Astrophysics” February 1–Ferbuary 8, 2015, Valday, Russia

Abstract

Neutrino produced in a chain of nuclear reactions in the Sun starting from the fusion of two protons, for the first time has been detected in a real-time detector in spectrometric mode. The unique properties of the Borexino detector provided an oppurtunity to disentangle pp-neutrino spectrum from the background components. A comparison of the total neutrino flux from the Sun with Solar luminosity in photons provides a test of the stability of the Sun on the 105 years time scale, and sets a strong limit on the power production in the unknown energy sources in the Sun of no more than 4% of the total energy production at 90% C.L.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. A. Chapman, “Solar luminosity,” Encyclopedia of Planetary Science, Encyclopedia of Earth Science (Springer Netherlands, 1997), pp. 748–748.CrossRefGoogle Scholar
  2. 2.
    C. Fröhlich and J. Lean, “The sun’s total irradiance: Cycles, trends and related climate change uncertainties since 1976,” Geophys. Res. Lett. 25 (23), 4377–4380 (1998).ADSCrossRefGoogle Scholar
  3. 3.
    J. N. Bahcall, Neutrino Astrophysics (Cambridge University Press, 1989).Google Scholar
  4. 4.
    N. Bahcall John, “The luminosity constraint on solar neutrino fluxes,” Phys. Rev. C 65, 025801 (2002).ADSCrossRefGoogle Scholar
  5. 5.
    P. Foukal, C. Fröhlich, H. Spruit, and T. M. L. Wigley, “Variations in solar luminosity and their effect on the earth’s climate,” Nature 443, 161–166 (2006).ADSCrossRefGoogle Scholar
  6. 6.
    G. Fiorentini and B. Ricci, “How long does it take for heat to flow through the Sun?,” Comm. Astroph. 1, 49–51 (1999).ADSGoogle Scholar
  7. 7.
    G. Bellini et al., “Precision measurement of the Be7 Solar neutrino interaction rate in Borexino,” Phys. Rev. Lett. 107 (14), 141302 (2011).ADSCrossRefGoogle Scholar
  8. 8.
    E. Calabresu, G. Fiorentini, and M. Lissia, “Physics potentials of pp and pep solar neutrino uxes,” Astropart. Phys. 5 (2), 205–214 (1996).ADSCrossRefGoogle Scholar
  9. 9.
    N. Bahcall John, “Why do solar neutrino experiments below 1-MeV?,” hep-ex/0106086.Google Scholar
  10. 10.
    R. S. Raghavan, Discovery Potential of Low Energy Solar Neutrino Experiments Notes for APS-SAWG, March 2004.Google Scholar
  11. 11.
    J. N. Abdurashitov et al., “Measurement of the solar neutrino capture rate with gallium metal. iii. results for the 2002–2007 data-taking period,” Phys. Rev. C 80, 015807 (2009).ADSCrossRefGoogle Scholar
  12. 12.
    F. Kaether, W. Hampel, G. Heusser, J. Kiko, and T. Kirsten, “Reanalysis of the gallex solar neutrino flux and source experiments,” Phys. Lett. B 685 (1), 47–54 (2010).ADSCrossRefGoogle Scholar
  13. 13.
    C. Grieb, J. M. Link, and R. S. Raghavan, “Probing active to sterile neutrino oscillations in the lens detector,” Phys. Rev. D 75, 093006 (2007).ADSCrossRefGoogle Scholar
  14. 14.
    R. S. Raghavan, “p p solar neutrino spectroscopy. P. Return of the indium detector,” Phys. Rev. Lett. (2001).Google Scholar
  15. 15.
    H. V. Klapdor-Kleingrothaus, “GENIUS—a new facility of non-accelerator particle physics,” Nucl. Phys. B—Proceedings Supplements, 100 (13), 350–355 (2001).ADSCrossRefGoogle Scholar
  16. 16.
    Y. H. Huang, R. E. Lanou, H. J. Maris, G. M. Seidel, B. Sethumadhavan, and W. Yao, “Potential for precision measurement of solar neutrino luminosity by {HERON},” Astropart. Phys. 30 (1), 1–11 (2008).ADSCrossRefGoogle Scholar
  17. 17.
    J. S. Adams, Y. H. Huang, Y. H. Kim, R. E. Lanou, H. J. Maris, and G. M. Seidel, “Low energy Solar neutrino detection,” The HERON Project. Chapter 8, 70–80 (2002).Google Scholar
  18. 18.
    K. Kawasaki et al., “Low energy Solar neutrino detection,” XMASS(XENON) II. Chapter 10, 91–97 (2002).Google Scholar
  19. 19.
    D. N. McKinsey, “Low energy Solar neutrino detection CLEAN: A self-shielding detector for characterizing the low energy Solar neutrino spectrum,” Chapter 12, 106–115 (2002).Google Scholar
  20. 20.
    A. Sarrat, “A low energy neutrino spectrometer,” Nucl. Phys. Proc. Suppl. 95, 177–180 (2001).ADSCrossRefGoogle Scholar
  21. 21.
    H. Ejiri, “Low energy Solar neutrino detection, MOON(Mo observatory of neutrinos) for low energy neutrinos,” Chapter 4, 29–36 (2002).Google Scholar
  22. 22.
    C. Broggini, “Low energy Solar neutrino detection. MuNu as a Solar neutrino detector,” Chapter 14, 132–141 (2002).Google Scholar
  23. 23.
    D. N. McKinsey and J. M. Doyle, “Liquid helium and liquid neon-sensitive, low background scintillation media for the detection of low energy neutrinos,” J. Low Temp. Phys. 118 (3)–(4), 153–165 (2000).ADSCrossRefGoogle Scholar
  24. 24.
    O. Ju. Smirnov, O. A. Zaimidoroga, and A. V. Derbin, “Search for solar pp neutrinos with an upgrade of ctf detector,” Phys. At. Nucl. 66, 712–723 (2003).CrossRefGoogle Scholar
  25. 25.
    A. V. Derbin, O. Yu. Smirnov, and O. A. Zaimidoroga, “On the possibility of detecting solar pp neutrino with the large-volume liquid organic scintillator detector,” Phys. At. Nucl. 67, 2066–2072 (2004).CrossRefGoogle Scholar
  26. 26.
    G. Bellini et al., “Final results of borexino phase-i on low-energy solar neutrino spectroscopy,” Phys. Rev. D 89, 112007 (2014).ADSCrossRefGoogle Scholar
  27. 27.
    G. Bellini et al., “Neutrinos from the primary protonproton fusion process in the Sun,” Nature 512, 383–386 (2014).ADSCrossRefGoogle Scholar
  28. 28.
    H. Back et al., “Borexino calibrations: Hardware, methods, and results,” J. Instrum. 7, 10018 (2012).CrossRefGoogle Scholar
  29. 29.
    O. Ju. Smirnov, “An approximation of the ideal scintillation detector line shape with a generalized gamma distribution,” Nucl. Instrum. Meth. A: Accelerators, Spectrometers, Detectors and Associated Equipment 595, 410–418 (2008).ADSCrossRefGoogle Scholar
  30. 30.
    C. Arpesella et al., “First real time detection of Be Solar neutrinos by Borexino,” Phys. Lett. B 658, 101–108 (2008).ADSCrossRefGoogle Scholar
  31. 31.
    C. Arpesella et al., “Direct measurement of the Be7 Solar neutrino flux with 192 days of Borexino data,” Phys. Rev. Lett. 101, 091302 (2008).ADSCrossRefGoogle Scholar
  32. 32.
    G. Bellini et al., “Measurement of the solar 8B neutrino rate with a liquid scintillator target and 3 mev energy threshold in the borexino detector,” Phys. Rev. D 82, 033006 (2010).ADSCrossRefGoogle Scholar
  33. 33.
    G. Bellini et al., “First evidence of solar neutrinos by direct detection in Borexino,” Phys. Rev. Lett. 108, 051302 (2012).ADSCrossRefGoogle Scholar
  34. 34.
    N. Grevesse and A. J. Sauval, “Standard solar composition,” Space Sci Rev. 85 (1)–(2), 161–174 (1998).ADSCrossRefGoogle Scholar
  35. 35.
    M. Asplund, N. Grevesse, A. J. Sauval, and P. Scott, “The chemical composition of the Sun,” Annu. Rev. Astron. Astrophys. 47 (1), 481–522 (2009).ADSCrossRefGoogle Scholar
  36. 36.
    B. Aharmim et al., “Low-energy-threshold analysis of the phase i and phase ii data sets of the Sudbury neutrino observatory,” Phys. Rev. C 81, 055504 (2010).ADSCrossRefGoogle Scholar
  37. 37.
    B. Aharmim et al., “A search for neutrinos from the solar hep reaction and the diffuse supernova neutrino background with the Sudbury neutrino observatory,” Astrophys. J. 653 (2), 1545 (2006).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • O. Yu. Smirnov
    • 1
  • M. Agostini
    • 2
  • S. Appel
    • 2
  • G. Bellini
    • 3
  • J. Benziger
    • 4
  • D. Bick
    • 5
  • G. Bonfini
    • 6
  • D. Bravo
    • 7
  • B. Caccianiga
    • 3
  • F. Calaprice
    • 8
  • A. Caminata
    • 9
  • P. Cavalcante
    • 6
  • A. Chepurnov
    • 10
  • K. Choi
    • 11
  • D. D’Angelo
    • 3
  • S. Davini
    • 12
  • A. Derbin
    • 13
  • L. Di Noto
    • 9
  • I. Drachnev
    • 12
  • A. Empl
    • 14
  • A. Etenko
    • 15
  • K. Fomenko
    • 1
  • D. Franco
    • 16
  • F. Gabriele
    • 6
  • C. Galbiati
    • 8
  • C. Ghiano
    • 9
  • M. Giammarchi
    • 3
  • M. Goeger-Neff
    • 2
  • A. Goretti
    • 8
  • M. Gromov
    • 10
  • C. Hagner
    • 5
  • E. Hungerford
    • 14
  • Aldo Ianni
    • 6
  • Andrea Ianni
    • 8
  • K. Jedrzejczak
    • 17
  • M. Kaiser
    • 5
  • V. Kobychev
    • 18
  • D. Korablev
    • 1
  • G. Korga
    • 6
  • D. Kryn
    • 16
  • M. Laubenstein
    • 6
  • B. Lehnert
    • 19
  • E. Litvinovich
    • 15
    • 20
  • F. Lombardi
    • 6
  • P. Lombardi
    • 3
  • L. Ludhova
    • 3
  • G. Lukyanchenko
    • 15
    • 20
  • I. Machulin
    • 15
    • 20
  • S. Manecki
    • 7
  • W. Maneschg
    • 21
  • S. Marcocci
    • 12
  • E. Meroni
    • 3
  • M. Meyer
    • 5
  • L. Miramonti
    • 3
  • M. Misiaszek
    • 17
    • 6
  • P. Mosteiro
    • 8
  • V. Muratova
    • 13
  • B. Neumair
    • 2
  • L. Oberauer
    • 2
  • M. Obolensky
    • 16
  • F. Ortica
    • 22
  • K. Otis
    • 23
  • L. Pagani
    • 9
  • M. Pallavicini
    • 9
  • L. Papp
    • 2
  • L. Perasso
    • 9
  • A. Pocar
    • 23
  • G. Ranucci
    • 3
  • A. Razeto
    • 6
  • A. Re
    • 3
  • A. Romani
    • 22
  • R. Roncin
    • 6
    • 16
  • N. Rossi
    • 6
  • S. Schönert
    • 2
  • D. Semenov
    • 13
  • H. Simgen
    • 21
  • M. Skorokhvatov
    • 15
    • 20
  • A. Sotnikov
    • 1
  • S. Sukhotin
    • 15
  • Y. Suvorov
    • 24
    • 15
  • R. Tartaglia
    • 6
  • G. Testera
    • 9
  • J. Thurn
    • 19
  • M. Toropova
    • 15
  • E. Unzhakov
    • 13
  • R. B. Vogelaar
    • 7
  • F. von Feilitzsch
    • 2
  • H. Wang
    • 24
  • S. Weinz
    • 25
  • J. Winter
    • 25
  • M. Wojcik
    • 17
  • M. Wurm
    • 25
  • Z. Yokley
    • 7
  • O. Zaimidoroga
    • 1
  • S. Zavatarelli
    • 9
  • K. Zuber
    • 19
  • G. Zuzel
    • 17
  1. 1.Joint Institute for Nuclear ResearchDubnaRussia
  2. 2.Physik-Department and Excellence Cluster UniverseTechnische Universität MünchenGarchingGermany
  3. 3.Dipartimento di FisicaUniversità degli Studi e INFNMilanoItaly
  4. 4.Chemical Engineering DepartmentPrinceton UniversityPrincetonUSA
  5. 5.Institut für Experimentalphysik, UniversitätHamburgGermany
  6. 6.INFN Laboratori Nazionali del Gran SassoAssergi (AQ)Italy
  7. 7.Physics Department, Virginia Polytechnic Institute and State UniversityBlacksburgUSA
  8. 8.Physics DepartmentPrinceton UniversityPrincetonUSA
  9. 9.Dipartimento di FisicaUniversità degli Studi e INFNGenovaItaly
  10. 10.Lomonosov Moscow State University Skobeltsyn Institute of Nuclear PhysicsMoscowRussia
  11. 11.Department of Physics and AstronomyUniversity of HawaiiHonoluluUSA
  12. 12.Gran Sasso Science Institute (INFN)Ł’AquilaItaly
  13. 13.St. Petersburg Nuclear Physics Institute NRC Kurchatov InstituteGatchinaRussia
  14. 14.Department of PhysicsUniversity of HoustonHoustonUSA
  15. 15.NRC Kurchatov InstituteMoscowRussia
  16. 16.AstroParticule et Cosmologie, Université Paris Diderot, CNRS/IN2P3, CEA/IRFUObservatoire de Paris, Sorbonne Paris CitéParis Cedex 13France
  17. 17.M. Smoluchowski Institute of PhysicsJagiellonian UniversityKrakowPoland
  18. 18.Kiev Institute for Nuclear ResearchKievUkraine
  19. 19.Department of PhysicsTechnische Universität DresdenDresdenGermany
  20. 20.National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)MoscowRussia
  21. 21.Max-Planck-Institut für KernphysikHeidelbergGermany
  22. 22.Dipartimento di Chimica, Biologia e BiotecnologieUniversità e INFNPerugiaItaly
  23. 23.Amherst Center for Fundamental Interactions and Physics DepartmentUniversity of MassachusettsAmherstUSA
  24. 24.Physics and Astronomy DepartmentUniversity of California Los Angeles (UCLA)Los AngelesUSA
  25. 25.Institute of Physics and Excellence Cluster PRISMAJohannes Gutenberg-Universität MainzMainzGermany

Personalised recommendations