Physics of Particles and Nuclei

, Volume 48, Issue 1, pp 21–26 | Cite as

Limits of Majorana neutrino mass from combined analysis of data from 76Ge and 136Xe neutrinoless double beta decay experiments

The International Workshop on Prospects of Particle Physics: “Neutrino Physics and Astrophysics” February 1–Ferbuary 8, 2015, Valday, Russia


We present effective Majorana neutrino mass limits <mββ> obtained from the joint analysis of the recently published results of 76Ge and 136Xe neutrinoless double beta decay (0νββ) experiments, which was carried out by using the Bayesian calculations. Nuclear matrix elements (NMEs) used for the analysis are taken from the works, in which NMEs of 76Ge and 136Xe were simultaneously calculated. This reduced systematic errors connected with NME calculation techniques. The new effective Majorana neutrino mass limits <mββ> less than [85.4–197.0] meV are much closer to the inverse neutrino mass hierarchy region.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Y. Fukuda et al. (SK Collab.), “Determination of solar neutrino oscillation parameters using 1496 days of Super-Kamiokande-I data”, Phys. Lett. B 539, 179–187 (2002).ADSCrossRefGoogle Scholar
  2. 1a.
    Q. R. Ahmad et al. (SNO Collab.), “Measurement of the rate of interactions produced by Solar neutrinos at the Sudbury Neutrino Observatory”, Phys. Rev. Lett. 87, 071301-1–071301-6 (2001).Google Scholar
  3. 1b.
    K. Educhi et al. (KamLAND Collab.), “First results from Kam- LAND: Evidence for reactor antineutrino disappearance”, Phys. Rev. Lett. 90, 021802-1–021802-6 (2003).Google Scholar
  4. 1c.
    V. N. Gavrin et al. (SAGE Collab.), “Measurement of the solar neutrino capture rate in SAGE”, Nucl. Phys. B. (Proc. Suppl.) 118, 39–51 (2003).ADSCrossRefGoogle Scholar
  5. 1d.
    J. N. Abdurashitov et al. (SAGE Collab.), “Solar neutrino flux measurements by the Soviet-American Gallium Experiment (SAGE) for half the 22-year Solar cycle”, J. Exp. Theor. Phys. 95, 181–193 (2002)ADSCrossRefGoogle Scholar
  6. 1e.
    W. Hampel et al. (GALLEX Collab.), “GALLEX solar neutrino obser-136Xe 76Ge 100Mo 130Te mßß 76Ge 136Xe 130Te 100Mo 76Ge 136Xe mßß Sm? < vations: Results for GALLEX IV”, Phys. Lett. B 447, 127–133 (1999)ADSCrossRefGoogle Scholar
  7. 1f.
    E. Bellotti et al. (GALLEX Collab.), “First results from GNO”, Nucl. Phys. B. (Proc. Suppl.) 91, 44–49 (2001).ADSCrossRefGoogle Scholar
  8. 2.
    W. M. Yao et al. (PDG Collab.), “Review of Particle Physics,” J. Phys. G 33, 1–1232 (2006)ADSCrossRefGoogle Scholar
  9. 2a.
    V. N. Aseev, A. I. Belesev, A. I. Berlev, E. V. Geraskin, A. A. Golubev, N. A. Lihovid, V. M. Lobashev, A. A. Nozik, V.S.Pantuev, V. I. Parfenov, A. K. Skasyrskaya, F. V. Tkachov, and S. V. Zadorozhny, “Measurement of the electron antineutrino mass in tritium beta decay in the Troitsk nu-mass experiment”, Phys. Atom. Nucl. 75, 464–478 (2012).ADSCrossRefGoogle Scholar
  10. 3.
    P. A. R. Ade et al. (Planck Collab.), “Planck 2015 results. XIII Cosmological parameters”. arXiv:1502.01589[astro-ph.CO].Google Scholar
  11. 4.
    C. L. Bennet et al. (WMAP Collab.), “Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Final maps and results”, AstroPhys. J. Suppl. Ser. 208, 20–74 (2013).ADSCrossRefGoogle Scholar
  12. 5.
    L. Anderson et al. (SDSS-III Collab.), “The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: Baryon Acoustic Oscillations in the Data Release 9 Spectroscopic Galaxy Sample”, Mon. Not. R. Astron. Soc. 427, 3435–3467 (2012).ADSCrossRefGoogle Scholar
  13. 6.
    G. L. Fogli, E. Lisi, A. Marrone, A. Melchiorri, A. Palazzo, A. M. Rotunno, P. Serra, J. Silk, and A. Slosar, “Observables sensitive to absolute neutrino masses. II”, Phys. Rev. D 78, 033010-1–033010-5 (2008).ADSCrossRefGoogle Scholar
  14. 6a.
    M. Mitra, G. Senjanovich, and F. Vissani, “Heavy sterile neutrinos and neutrinoless double beta decay”. arXiv:1205.3867 [hep-ph].Google Scholar
  15. 7.
    S. M. Bilenky and C. Giunti, “Neutrinoless doublebeta decay: A probe of physics beyond the Standard Model”. arXiv:1411.4791[hep-ph].Google Scholar
  16. 8.
    P. S. Bhupal Dev, S. Goswami, M. Mitra, and W. Rodejohann, “Constraining Neutrino Mass from Neutrinoless Double beta Decay”, arXiv:1305.0056[hep-ph].Google Scholar
  17. 9.
    M. A. Agostini et al. (GERDA Collab.), “Results on neutrinoless double decay of 76Ge from phase I of the GERDA experiment”, Phys. Rev. Lett. 111, 122503- 1–122503-6 (2013).ADSCrossRefGoogle Scholar
  18. 10.
    A. Gando et al. (KamLAND-Zen Collab.), “Limit on neutrinoless decay of 136Xe from first phase of Kam- LAND-Zen and comparison with the positive claim in 76Ge”, Phys. Rev. Lett. 110, 062502-1–062502-5 (2013).ADSCrossRefGoogle Scholar
  19. 11.
    M. A. Agostini et al. (GERDA Collab.), “The background in the neutrinoless double beta decay experiment GERDA”, Eur. Phys. J. C 74, 2764-1–2764-25 (2014)Google Scholar
  20. 11a.
    M. A. Agostini et al. (GERDA Collab.), “The GERDA experiment for the search of 0 decay in 76Ge”, Eur. Phys. J. C 73, 2330-1–2330-29 (2013).ADSCrossRefGoogle Scholar
  21. 11b.
    M. A. Agostini et al. (GERDA Collab.), “Pulse shape discrimination for GERDA Phase I data”, Eur. Phys. J. C 73, 2583-1–2583-17 (2013).ADSCrossRefGoogle Scholar
  22. 12.
    H. V. Klapdor-Kleingrothaus et al. (HdM Collab.), “Latest results from the Heidelberg-Moscow double beta decay experiment”, Eur. Phys. J. A 12, 147–154 (2001).ADSCrossRefGoogle Scholar
  23. 13.
    C. E. Aalseth et al. (IGEX Collab.), “The IGEX Ge-76 neutrinoless double-beta decay experiment: Prospects for next generation experiments”, Phys. Rev. D 65, 092007-1–092007-6 (2002).ADSCrossRefGoogle Scholar
  24. 14.
    J. B. Albert et al. (EXO-200 Collab.), “Search for Majorana neutrinos with the first two years of EXO- 200 data”; arXiv:1402.695 [nucl-exp].Google Scholar
  25. 15.
    A. Asakura et al. (KamLAND-Zen Collab.), “Results from KamLAND-Zen”; arXiv:1409.0077v1 [physics. ins-det].Google Scholar
  26. 16.
    A. Caldwell and K. Kroninger, “Signal discovery in sparse spectra: A Bayesian analysis”, Phys. Rev. D 74, 092003-1–092003-7 (2006).ADSCrossRefGoogle Scholar
  27. 17.
    F. Šimkovic, V. Rodin, A. Faessler, and P. Vogel, “0 and 2 nuclear matrix elements, quasiparticle random-phase approximation, and isospin symmetry restoration”, Phys. Rev. C 87, 045501-1–045501-9 (2013).ADSCrossRefGoogle Scholar
  28. 17a.
    A. Meroni, S. T. Petkov, and F. Šimkovic, “Multiple CP non-conserving mechanisms of (decay and nuclei with largely different nuclear matrix elements”, J. High Energy Phys. 2, 025-1–025-27 (2013)ADSCrossRefGoogle Scholar
  29. 17b.
    J. Suhonen and O. Civitarese, “Effects of orbital occupancies and spin-orbit partners on 0-decay rates”, Nucl. Phys. A 847, 207–232 (2010).ADSCrossRefGoogle Scholar
  30. 18.
    T. A. Rodriguez and G. Martinez-Pinedo, “Energy density functional study of nuclear matrix elements for neutrinoless decay”, Phys. Rev. Lett. 105, 252503- 1–252503-4 (2010)ADSCrossRefGoogle Scholar
  31. 18a.
    M. T. Mustonen and J. Engel, “Large-Scale Calculations of the Double-Beta Decay of 76Ge, 130Te, 136Xe, and 150Nd in the Deformed Self- Consistent Skyrme Quasiparticle Random-Phase Approximation”; arXiv:1301.6997[nucl-th].Google Scholar
  32. 19.
    A. Smolnikov and P. Grabmayr, “Conversion of experimental half life time to effective electron neutrino mass in 0 decay”, Phys. Rev. C 81, 028502-1–028502-4 (2010).ADSCrossRefGoogle Scholar
  33. 20.
    J. Kotila and F. Iachello, “Phase-space factors for double beta decay”, Phys. Rev. C 85, 034316-1–034316-13 (2012).ADSCrossRefGoogle Scholar
  34. 21.
    R. Arnold et al. (NEMO-3 Collab.), “Search for neutrinoless double beta decay with the NEMO-3 detector”, Phys. Rev. D 89, 111101-1–111101-6 (2014).ADSCrossRefGoogle Scholar
  35. 22.
    E. Andreotti et al. (CUORE Collab.), “130Te neutrinoless double beta decay with CUORICINO”, Astroparticle Phys. 34, 822–831 (2011).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.JINR—Joint Institute for Nuclear ResearchMoscow Region, DubnaRussia

Personalised recommendations