Physics of Particles and Nuclei

, Volume 47, Issue 4, pp 508–539 | Cite as

Gauge fields, nonlinear realizations, supersymmetry

The issue is devoted to the 60th anniversary of the Joint Institute for Nuclear Research

Abstract

This is a brief survey of the all-years research activity in the Sector “Supersymmetry” (the former Markov Group) at the Bogoliubov Laboratory of Theoretical Physics. The focus is on the issues related to gauge fields, spontaneously broken symmetries in the nonlinear realizations approach, and diverse aspects of supersymmetry.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C.-N. Yang and R. L. Mills, “Conservation of isotopic spin and isotopic gauge invariance,” Phys. Rev. 96, 191–195 (1954).ADSMathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    S. R. Coleman, J. Wess, and B. Zumino, “Structure of phenomenological Lagrangians, 1,” Phys. Rev. 177, 2239–2247 (1969); C. G. Callan, S. R. Coleman, J. Wess, and B. Zumino, “Structure of phenomenological Lagrangians, 2,” Phys. Rev. 177, 2247–2250 (1969).ADSCrossRefGoogle Scholar
  3. 3.
    D. V. Volkov, “Phenomenological Lagrangians,” Fiz. Elem. Chastits At. Yadra 4, 3–41 (1973).MathSciNetGoogle Scholar
  4. 4.
    V. I. Ogievetsky, in Proceedings of X Winter School of Theoretical Physics in Karpach (Wroclaw, 1974), Vol. 1, pp. 117–132.Google Scholar
  5. 5.
    Yu. A. Golfand and E. P. Lichtman, “Extension of the algebra of Poincaré group generators and breakdown of P-invariance,” JETP Lett. 13, 323–326 (1971).ADSGoogle Scholar
  6. 6.
    D. V. Volkov and V. P. Akulov, “On a possible universal interaction of the neutrino,” JETP Lett. 16, 438–440 (1972).ADSGoogle Scholar
  7. 7.
    J. Wess and B. Zumino, “Supergauge transformations in four dimensions,” Nucl. Phys. B 70, 39–50 (1974).ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    E. A. Ivanov, “Supersymmetry in superspace: 35 years of the research activity in LTP,” Phys. Part. Nucl. 40, 291–306 (2009); Supersymmetry at BLTP: How It Started and Where We Are, arXiv:hep-th/0609176.CrossRefGoogle Scholar
  9. 9.
    V. I. Ogievetsky and I. V. Polubarinov, “On a sense of gauge invariance,” Nuovo Cim. 23, 173 (1962); V. I. Ogievetskij and I. V. Polubarinov, “Interacting fields of definite spin,” J. Exp. Theor. Phys. 45, 237–245 (1963).MATHCrossRefGoogle Scholar
  10. 10.
    V. I. Ogievetsky and I. V. Polubarinov, “Theories of interacting fields with spin 1,” Nucl. Phys. 76, 677 (1966); V. I. Ogievetsky and I. V. Polubarinov, “Interacting spin 1 fields and symmetry properties,” J. Exp. Theor. Phys. 45, 966–977 (1963); “Minimal interactions between the fields of spin 0, 1/2 and 1,” J. Exp. Theor. Phys. 46, 1048–1055 (1964).CrossRefGoogle Scholar
  11. 11.
    V. I. Ogievetsky and I. V. Polubarinov, “Interacting field spin and symmetries,” in Proceedings of International School on Theoretical Physics (Dubna, 1964), Vol. 2.Google Scholar
  12. 12.
    V. I. Ogievetsky and I. V. Polubarinov, “Interacting field of spin 2 and the Einstein equations,” Ann. Phys. (N. Y.) 35, 167 (1965).ADSCrossRefGoogle Scholar
  13. 13.
    A. S. Galperin, E. A. Ivanov, V. I. Ogievetsky, and E. S. Sokatchev, Harmonic Superspace (Cambridge University Press, Cambridge, 2001).MATHCrossRefGoogle Scholar
  14. 14.
    V. I. Ogievetsky, Private communication.Google Scholar
  15. 15.
    I. V. Polubarinov, “Equations of quantum electrodynamics,” Phys. Part. Nucl. 34, 377–410 (2003).Google Scholar
  16. 16.
    V. I. Ogievetsky and I. V. Polubarinov, “The notoph and its possible interactions,” J. Nucl. At. Phys. 4, 156–161 (1967).Google Scholar
  17. 17.
    M. Kalb and P. Ramond, “Classical direct interstring action,” Phys. Rev. D 9, 2273–2284 (1974).ADSCrossRefGoogle Scholar
  18. 18.
    V. I. Ogievetsky and I. V. Polubarinov, “Spinors in gravitation theory,” J. Exp. Theor. Phys. 21, 1093–1100 (1965).ADSMathSciNetGoogle Scholar
  19. 19.
    A. B. Borisov and V. I. Ogievetsky, “Theory of dynamical affine and conformal symmetries as gravity theory,” Theor. Math. Phys. 21, 1179–1188 (1975).CrossRefGoogle Scholar
  20. 20.
    B. M. Zupnik and V. I. Ogievetsky, “Investigation of non-linear realizations of chiral groups by the method of generating functions,” Teor. Mat. Fiz. 1, 19–33 (1969).CrossRefGoogle Scholar
  21. 21.
    V. I. Ogievetsky and B. M. Zupnik, “On the chiral SU(2) × SU(2) dynamics for A1, ρ and π mesons,” Nucl. Phys. B 24, 612–622 (1970).ADSCrossRefGoogle Scholar
  22. 22.
    E. Ivanov and E. Truhlik, “Hard pions and axial meson exchange currents in nuclear physics,” Nucl. Phys. A 316, 437–450 (1979); “Hard pions and axial meson exchange current effects in negative muon capture in deuterium,” Nucl. Phys. A 316, 451–460 (1979).ADSCrossRefGoogle Scholar
  23. 23.
    V. I. Ogievetsky, “Infinite-dimensional algebra of general covariance group as the closure of finite-dimensional algebras of conformal and linear groups,” Lett. Nuovo Cimento 8, 988–990 (1973).MathSciNetCrossRefGoogle Scholar
  24. 24.
    H. Godazgar, M. Godazgar, O. Hohm, H. Nicolai, and H. Samtleben, “Supersymmetric E7(7) exceptional field theory,” J. High Energy Phys. 1409, 044 (2014); arXiv:1406.3235[hep-th].ADSMathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    E. A. Ivanov and V. I. Ogievetsky, “Gauge theories as theories of spontaneous breakdown,” Lett. Math. Phys. 1, 309–313 (1976).ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    E. A. Ivanov, “On the geometric meaning of the N = 1 Yang–Mills prepotential,” Phys. Lett. B 117, 59–63 (1982).ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    E. A. Ivanov and J. Niederle, “N = 1 supergravity as a nonlinear realization,” Phys. Rev. D 45, 4545–4554 (1992).ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    E. A. Ivanov and V. I. Ogievetsky, “The inverse Higgs phenomenon in nonlinear realizations,” Teor. Mat. Fiz. 25, 164–177 (1975).MathSciNetCrossRefGoogle Scholar
  29. 29.
    E. Ivanov, “Diverse PBGS patterns and superbranes,” in Proceedings of 14th Max Born Symposium, Karpacz, Poland, 1999, pp. 206–217; arXiv:hep-th/0002204.Google Scholar
  30. 30.
    E. A. Ivanov, S. O. Krivonos, and V. M. Leviant, “Geometry of conformal mechanics,” J. Phys. A: Math. Gen. 22, 345–354 (1989).ADSMathSciNetMATHCrossRefGoogle Scholar
  31. 31.
    J. Gomis, K. Kamimura, and J. M. Pons, “Non-linear realizations, goldstone bosons of broken Lorentz rotations and effective actions for p-branes,” Nucl. Phys. B 871, 420–451 (2013); arXiv:1205. 1385[hep-th].ADSMathSciNetMATHCrossRefGoogle Scholar
  32. 32.
    S. Bellucci, E. Ivanov, and S. Krivonos, “Superworld volume dynamics of superbranes from nonlinear realizations,” Phys. Lett. B 482, 233–240 (2000); arXiv:hep-th/0003273.ADSMathSciNetMATHCrossRefGoogle Scholar
  33. 33.
    E. A. Ivanov and S. O. Krivonos, “U(1)-supersymmetric extension of the Liouville equation,”,” Lett. Math. Phys. 7, 523–531 (1983); Lett. Math. Phys 8, 345E (1984).ADSMathSciNetMATHCrossRefGoogle Scholar
  34. 34.
    E. A. Ivanov and S. O. Krivonos, “N = 4 super Liouville equation,” J. Phys. A: Math. Gen. 17, L671–L676 (1984).ADSMathSciNetMATHCrossRefGoogle Scholar
  35. 35.
    E. A. Ivanov, S. O. Krivonos, and V. M. Leviant, “Geometric superfield approach to superconformal mechanics,” J. Phys. A: Math. Gen. 22, 4201–4222 (1989).ADSMathSciNetMATHCrossRefGoogle Scholar
  36. 36.
    S. Fedoruk, E. Ivanov, and J. Lukierski, “Galilean conformal mechanics from nonlinear realizations,” Phys. Rev. D 83, 085013 (2011); arXiv:1101. 1658[hep-th].ADSCrossRefGoogle Scholar
  37. 37.
    E. A. Ivanov, “Yang–Mills theory in sigma model representation,” JETP Lett. 30, 422 (1979).ADSGoogle Scholar
  38. 38.
    E. A. Ivanov and J. Niederle, “Gauge formulation of gravitation theories, 1: The Poincare, De Sitter and conformal cases,” Phys. Rev. D 25, 976–987 (1982).ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    E. A. Ivanov and J. Niederle, “Gauge formulation of gravitation theories, 2: The special conformal case,” Phys. Rev. D 25, 988–994 (1982).ADSMathSciNetCrossRefGoogle Scholar
  40. 40.
    K. S. Stelle and P. C. West, “Spontaneously broken de Sitter symmetry and the gravitational holonomy group,” Phys. Rev. D 21, 1466–1488 (1980).ADSMathSciNetCrossRefGoogle Scholar
  41. 41.
    A. Salam and J. Strathdee, “Supergauge transformations,” Nucl. Phys. B 76, 477–482 (1974); “On superfields and Fermi-Bose symmetry,” Phys. Rev. D 11, 1521–1535 (1975).ADSMathSciNetCrossRefGoogle Scholar
  42. 42.
    S. Ferrara, B. Zumino, and J. Wess, “Supergauge multiplets and superfields,” Phys. Lett. B 51, 239–241 (1974).ADSCrossRefGoogle Scholar
  43. 43.
    L. Mezincescu and V. I. Ogievetsky, Preprint JINRE2-8277 (Dubna, 1974).Google Scholar
  44. 44.
    F. A. Berezin, “The method of second quantization,” Pure Appl. Phys. 24, 1–228 (1966).MathSciNetCrossRefGoogle Scholar
  45. 45.
    J. Wess and B. Zumino, “A Lagrangian model invariant under supergauge transformations,” Phys. Lett. B 49, 52–54 (1974).ADSCrossRefGoogle Scholar
  46. 46.
    V. I. Ogievetsky and L. Mezincescu, “Symmetries between bosons and fermions and superfields,” Usp. Fiz. Nauk 117, 637–683 (1975).CrossRefGoogle Scholar
  47. 47.
    E. Sokatchev, “Projection operators and supplementary conditions for superfields with an arbitrary spin,” Nucl. Phys. B 99, 96–108 (1975).ADSMathSciNetCrossRefGoogle Scholar
  48. 48.
    D. Z. Freedman, P. van Nieuwenhizen, and S. Ferrara, “Progress toward a theory of supergravity,” Phys. Rev. D 13, 3214–3218; S. Deser and B. Zumino, “Consistent supergravity,” Phys. Lett. B 62, 335–337 (1976).Google Scholar
  49. 49.
    V. Ogievetsky and E. Sokatchev, “On vector superfield generated by supercurrent,” Nucl. Phys. B 124, 309–316 (1977).ADSCrossRefGoogle Scholar
  50. 50.
    S. Ferrara and B. Zumino, “Transformation properties of the supercurrent,” Nucl. Phys. B 87, 207–220 (1975).ADSCrossRefGoogle Scholar
  51. 51.
    V. Ogievetsky and E. Sokatchev, “Supercurrent,” J. Nucl. At. Phys. 28, 423 (1978).MathSciNetGoogle Scholar
  52. 52.
    V. I. Ogievetsky and E. Sokatchev, “Superfield equations of motion,” J. Phys. A: Math. Gen. 10, 2021–2030 (1977).ADSCrossRefGoogle Scholar
  53. 53.
    V. Ogievetsky and E. Sokatchev, “Structure of supergravity group,” Phys. Lett. B 79, 222–224 (1978).ADSCrossRefGoogle Scholar
  54. 54.
    V. Ogievetsky and E. Sokatchev, “The gravitational axial superfield and the formalism of differential geometry,” J. Nucl. At. Phys. 31, 424 (1980).MathSciNetGoogle Scholar
  55. 55.
    D. V. Volkov and V. A. Soroka, “Higgs effect for Goldstone particles with spin 1/2,” JETP Lett. 18, 312–314 (1973).ADSMATHGoogle Scholar
  56. 56.
    I. Bandos, L. Martucci, D. Sorokin, and M. Tonin, “Brane induced supersymmetry breaking and de Sitter supergravity,” J. High Energy Phys. 1602, 080 (2016); arXiv: 1511.03024 [hep-th].ADSCrossRefGoogle Scholar
  57. 57.
    J. Wess and B. Zumino, “Superspace formulation of supergravity,” Phys. Lett. B 66, 361–364 (1977).ADSMathSciNetCrossRefGoogle Scholar
  58. 58.
    J. Wess and B. Zumino, “Supergauge invariant extension of quantum electrodynamics,” Nucl. Phys. B 78, 1–13 (1974); S. Ferrara and B. Zumino, “Supergauge invariant Yang–Mills theories,” Nucl. Phys. B 79, 413–421 (1974); A. Salam and J. Strathdee, “Supersymmetry and nonabelian gauges,” Phys. Lett. B 51, 353–355 (1974).ADSMathSciNetCrossRefGoogle Scholar
  59. 59.
    W. Siegel and S. J. Gates, “Superfield supergravity,” Nucl. Phys. B 147, 77–104 (1979).ADSMathSciNetMATHCrossRefGoogle Scholar
  60. 60.
    K. S. Stelle and P. C. West, “Minimal auxiliary fields for supergravity,” Phys. Lett. B 74, 330–332 (1978); S. Ferrara and P. van Nieuwenhuizen, “The auxiliary fields of supergravity,” Phys. Lett. B 74, 333–335 (1978).ADSCrossRefGoogle Scholar
  61. 61.
    E. S. Fradkin and A. A. Tseytlin, “Conformal supergravity,” Phys. Rep. 119, 233–362 (1985).ADSMathSciNetMATHCrossRefGoogle Scholar
  62. 62.
    E. A. Ivanov and A. A. Kapustnikov, Preprint JINRE2-10765 (Dubna, 1977).Google Scholar
  63. 63.
    E. A. Ivanov and A. A. Kapustnikov, “General relationship between linear and nonlinear realizations of supersymmetry,” J. Phys. A: Math. Gen. 11, 2374–2384 (1978).ADSMathSciNetCrossRefGoogle Scholar
  64. 64.
    E. A. Ivanov and A. A. Kapustnikov, “The nonlinear realization structure of models with spontaneously broken supersymmetry,” J. Phys. G: Nucl. Phys. 8, 167–191 (1982).ADSCrossRefGoogle Scholar
  65. 65.
    I. Antoniadis, E. Dudas, and D. M. Ghilencea, “Goldstino and sgoldstino in microscopic models and the constrained superfields formalism,” Nucl. Phys. B 857, 65–84 (2012); arXiv:1110.5939[hep-th].ADSMathSciNetMATHCrossRefGoogle Scholar
  66. 66.
    Z. Komargodski and N. Seiberg, “From linear SUSY to constrained superfields,” J. High Energy Phys. 0909, 066 (2009); arXiv:0907.2441[hep-th].ADSMathSciNetCrossRefGoogle Scholar
  67. 67.
    S. Samuel and J. Wess, “A superfield formulation of the non-linear realization of supersymmetry and its coupling to supergravity,” Nucl. Phys. B 221, 153–177 (1983).ADSMathSciNetCrossRefGoogle Scholar
  68. 68.
    E. A. Ivanov and A. A. Kapustnikov, “On a model independent description of spontaneously broken N = 1 supergravity in superspace,” Phys. Lett. B 143, 379–383 (1984); “Geometry of spontaneously broken local N = 1 supersymmetry in superspace,” Nucl. Phys. B 333, 439–470 (1990).ADSMathSciNetCrossRefGoogle Scholar
  69. 69.
    I. Antoniadis, E. Dudas, S. Ferrara, and A. Sagnotti, “The Volkov–Akulov–Starobinsky supergravity,” Phys. Lett. B 733, 32–35 (2014); arXiv:1403.3269[hep-th].ADSMathSciNetCrossRefGoogle Scholar
  70. 70.
    M. Roček, “Linearizing the Volkov–Akulov model,” Phys. Rev. Lett. 41, 451–453 (1978); U. Lindstrüm and M. Roček, “Constrained local superfields,” Phys. Rev. D 19, 2300–2303 (1979).ADSCrossRefGoogle Scholar
  71. 71.
    E. A. Ivanov and A. S. Sorin, “Superfield formulation of OSp(1, 4) supersymmetry,” J. Phys. A: Math. Gen. 13, 1159–1188 (1980).ADSMathSciNetCrossRefGoogle Scholar
  72. 72.
    E. A. Ivanov and A. S. Sorin, “Wess-Zumino model as linear sigma model of spontaneously broken conformal and OSp(1, 4) supersymmetries,” J. Nucl. At. Phys. 30, 440 (1979).MathSciNetGoogle Scholar
  73. 73.
    I. A. Bandos, E. Ivanov, J. Lukierski, and D. Sorokin, “On the superconformal flatness of AdS superspaces,” J. High Energy Phys. 0206, 040 (2002); arXiv:hepth/0205104.ADSMathSciNetCrossRefGoogle Scholar
  74. 74.
    S. J. Gates, K. S. Stelle, and P. C. West, “Algebraic origins of superspace constraints in supergravity,” Nucl. Phys. B 169, 347–364 (1980).ADSMathSciNetCrossRefGoogle Scholar
  75. 75.
    D. Cassani, C. Klare, D. Martelli, A. Tomasiello, and A. Zaffaroni, “Supersymmetry in Lorentzian curved spaces and holography,” Commun. Math. Phys. 327, 577–602 (2014); arXiv:1207.2181[hep-th].ADSMathSciNetMATHCrossRefGoogle Scholar
  76. 76.
    G. Festuccia and N. Seiberg, “Rigid supersymmetric theories in curved superspace,” J. High Energy Phys. 1106, 114 (2011); arXiv:1105.0689[hep-th].ADSMathSciNetMATHCrossRefGoogle Scholar
  77. 77.
    R. Grimm, M. Sohnius, and J. Wess, “Extended supersymmetry and gauge theory,” Nucl. Phys. B 133, 275–284 (1978).ADSMathSciNetCrossRefGoogle Scholar
  78. 78.
    L. Mezincescu, Preprint JINR-R2-12572 (Dubna, 1979).Google Scholar
  79. 79.
    K. S. Stelle, Preprint NSF-ITP-95-001 (Santa Barbara).Google Scholar
  80. 80.
    A. Galperin, E. Ivanov, and V. Ogievetsky, “Grassmann analyticity and extended supersymmetry,” JETP Lett. 33, 168–172 (1981).ADSGoogle Scholar
  81. 81.
    A. Galperin, E. Ivanov, and V. Ogievetsky, “Superfield anatomy of the Fayet-Sohnius multiplet,” Phys. At. Nucl. 46, 458–463 (1982).Google Scholar
  82. 82.
    A. Galperin, E. Ivanov, V. Ogievetsky, and E. Sokatchev, “Harmonic superspace: a key to N = 2 supersymmetric theories,” JETP Lett. 40, 912–916 (1984); A. Galperin, E. Ivanov, S. Kalitzin, V. Ogivetsky, and E. Sokatchev, “Unconstrained N = 2 matter, Yang–Mills and supergravity theories in harmonic superspace,” Classical Quantum Gravity 1, 469–498 (1984); Classical Quantum Gravity 2, 127E (1985).ADSGoogle Scholar
  83. 83.
    A. Galperin, E. Ivanov, V. Ogievetsky, and E. Sokatchev, “Harmonic supergraphs: Green functions,” Classical Quantum Gravity 2, 601–616 (1985); “Harmonic supergraphs: Feynman rules and examples,” Classical Quantum Gravity 2, 617–630 (1985).ADSMathSciNetMATHCrossRefGoogle Scholar
  84. 84.
    A. Karlhede, U. Lindström, and M. Roček, “Selfinteracting tensor multiplet in N = 2 superspace,” Phys. Lett. B 147, 297–300 (1984).ADSMathSciNetCrossRefGoogle Scholar
  85. 85.
    A. Galperin, E. Ivanov, V. Ogievetsky, and E. Sokatchev, “Hyperkahler metrics and harmonic superspace,” Commun. Math. Phys. 103, 515–526 (1986).ADSMathSciNetMATHCrossRefGoogle Scholar
  86. 86.
    L. Alvarez-Gaumé and D. Z. Freedman, “Ricci-flat Káhler manifolds and supersymmetry,” Phys. Lett. B 94, 171–173 (1980).ADSCrossRefGoogle Scholar
  87. 87.
    A. S. Galperin, E. A. Ivanov, V. I. Ogievetsky, and E. Sokatchev, “Gauge field geometry from complex and harmonic analyticities. Hyperkahler case,” Ann. Phys. 185, 22–45 (1988).ADSMathSciNetCrossRefGoogle Scholar
  88. 88.
    B. Zumino, “Supersymmetry and Káhler manifolds,” Phys. Lett. B 87, 203–206 (1979).ADSCrossRefGoogle Scholar
  89. 89.
    A. Galperin, E. Ivanov, V. Ogievetsky, and P. K. Townsend, “Eguchi-Hanson type metrics from harmonic superspace,” Classical Quantum Gravity 3, 625–633 (1986).ADSMathSciNetMATHCrossRefGoogle Scholar
  90. 90.
    F. Delduc and E. Ivanov, “N = 4 mechanics of general (4, 4, 0) multiplets,” Nucl. Phys. B 855, 815–853 (2012); arXiv:1107. 1429[hep-th].ADSMathSciNetMATHCrossRefGoogle Scholar
  91. 91.
    A. A. Rosly, “Super Yang–Mills constraints as integrability conditions,” in Proceedings of International Seminar “Theoretical-Group Methods in Physics,” Zvenigorod, November 1982 (Nauka, Moscow, 1983), Vol. 1, pp. 263–268.Google Scholar
  92. 92.
    B. M. Zupnik, “The action of the supersymmetric N = 2 gauge theory in harmonic superspace,” Phys. Lett. B 183, 175–176 (1987).ADSMathSciNetCrossRefGoogle Scholar
  93. 93.
    A. Galperin, E. Ivanov, V. Ogievetsky, and E. Sokatchev, Preprint JINR E2-85-363 (Dubna, 1985; Quantum Field Theory and Quantum Statistics, Ed. by I. Batalin, C. J. Isham, and G. Vilkovisky (Adam Hilger, Bristo, 1987), Vol. 2, pp. 233–248.Google Scholar
  94. 94.
    A. Galperin, E. Ivanov, V. Ogievetsky, and E. Sokatchev, “N = 2 supergravity in superspace: different versions and matter couplings,” Classical Quantum Gravity 4, 1255–1265 (1987).ADSMathSciNetMATHCrossRefGoogle Scholar
  95. 95.
    A. Galperin, Nguen Anh Ky, and E. Sokatchev, “N = 2 supergravity in superspace: Solution to the constraints and the invariant action,” Classical Quantum Gravity 4, 1235–1254 (1987).ADSMathSciNetMATHCrossRefGoogle Scholar
  96. 96.
    J. Bagger and E. Witten, “Matter couplings in N = 2 supergravity,” Nucl. Phys. B 222, 1–10 (1983).ADSMathSciNetCrossRefGoogle Scholar
  97. 97.
    A. Galperin, E. Ivanov, and O. Ogievetsky, “Harmonic space and quaternionic manifolds,” Ann. Phys. 230, 201–249 (1994); arXiv:hep-th/9212155.ADSMathSciNetMATHCrossRefGoogle Scholar
  98. 98.
    J. A. Bagger, A. S. Galperin, E. A. Ivanov, and V. I. Ogievetsky, “Gauging N = 2 σ models in harmonic superspace,” Nucl. Phys. B 303, 522 (1988).ADSMathSciNetCrossRefGoogle Scholar
  99. 99.
    E. Ivanov and G. Valent, “Quaternionic metrics from harmonic superspace: Lagrangian approach and quotient construction,” Nucl. Phys. B 576, 543–577 (2000); arXiv:hep-th/0001165.ADSMathSciNetMATHCrossRefGoogle Scholar
  100. 100.
    A. Galperin, E. Ivanov, S. Kalitzin, V. Ogievetsky, and E. Sokatchev, “Unconstrained off-shell N = 3 supersymmetric Yang–Mills theory,” Classical Quantum Gravity 2, 155–166 (1985); A. Galperin, E. Ivanov, S. Kalitzin, V. Ogievetsky, and E. Sokatchev, “N = 3 supersymmetric gauge theory,” Phys. Lett. B 151, 215–218 (1985).ADSMathSciNetMATHCrossRefGoogle Scholar
  101. 101.
    A. S. Galperin, E. A. Ivanov, and V. I. Ogievetsky, “Superspaces for N = 3 supersymmetry,” Phys. At. Nucl. 46, 543–556 (1987).MathSciNetGoogle Scholar
  102. 102.
    P. S. Howe and P. C. West, “Operator product expansions in four-dimensional superconformal field theories,” Phys. Lett. B 389, 273–279 (1996); arXiv:hepth/9607060.ADSMathSciNetCrossRefGoogle Scholar
  103. 103.
    I. L. Buchbinder, E. I. Buchbinder, E. A. Ivanov, S. M. Kuzenko, and B. A. Ovrut, “Effective action of the N = 2 Maxwell multiplet in harmonic superspace,” Phys. Lett. B 412, 309–319 (1997); arXiv:hepth/9703147.ADSMathSciNetCrossRefGoogle Scholar
  104. 104.
    E. I. Buchbinder, B. A. Ovrut, I. L. Buchbinder, E. A. Ivanov, and S. M. Kuzenko, “Low-energy effective action in N = 2 supersymmetric field theories,” Phys. Part. Nucl. 32, 641–674 (2001).Google Scholar
  105. 105.
    N. Seiberg and E. Witten, “Electric-magnetic duality, monopole condensation, and confinement in 1 = 2 supersymmetric Yang-Mills theory,” Nucl. Phys. B 426, 19–52 (1994); Nucl. Phys. B 430, 485–486E (1994); arXiv:hep-th/9407087.ADSMathSciNetMATHCrossRefGoogle Scholar
  106. 106.
    E. A. Ivanov, S. V. Ketov, and B. M. Zupnik, “Induced hypermultiplet selfinteractions in N = 2 gauge theories,” Nucl. Phys. B 509, 53–82 (1998); arXiv:hepth/9706078.ADSMathSciNetMATHCrossRefGoogle Scholar
  107. 107.
    I. L. Buchbinder and E. A. Ivanov, “Complete N = 4 structure of low-energy effective action in N = 4 super Yang–Mills theories,” Phys. Lett. B 524, 208–216 (2002); arXiv:hep-th/0111062.ADSMathSciNetMATHCrossRefGoogle Scholar
  108. 108.
    I. L. Buchbinder, E. A. Ivanov, and A. Yu. Petrov, “Complete low-energy effective action in 1 = 4 SYM: A direct N = 2 supergraph calculation,” Nucl. Phys. B 653, 64–84 (2003); arXiv:hep-th/0210241.ADSMathSciNetMATHCrossRefGoogle Scholar
  109. 109.
    D. Chicherin and E. Sokatchev, “A note on four-point correlators of half-BPS operators in N = 4 SYM,” J. High Energy Phys. 1411, 139 (2014); arXiv:1408.3527[hep-th].ADSCrossRefGoogle Scholar
  110. 110.
    P. S. Howe and G. Papadopoulos, “Twistor spaces for HKT manifolds,” Phys. Lett. 379, 80–86 (1996); arXiv:hep-th/9602108.MathSciNetCrossRefGoogle Scholar
  111. 111.
    E. Ivanov and O. Lechtenfeld, “N = 4 supersymmetric mechanics in harmonic superspace,” J. High Energy Phys. 0309, 073 (2003); arXiv:hep-th/0307111.ADSMathSciNetCrossRefGoogle Scholar
  112. 112.
    E. Ivanov and A. Sutulin, “Sigma models in (4, 4) harmonic superspace,” Nucl. Phys. B 432, 246–280 (1994); Nucl. Phys. B 483, 531E (1997); arXiv:hepth/9404098.ADSMathSciNetMATHCrossRefGoogle Scholar
  113. 113.
    E. A. Ivanov, “Off-shell (4, 4) supersymmetric sigma models with torsion as gauge theories in harmonic superspace,” Phys. Lett. B 356, 239–248 (1995); arXiv:hep-th/9504070.ADSMathSciNetCrossRefGoogle Scholar
  114. 114.
    E. Ivanov and J. Niederle, “Bi-harmonic superspace for 1 = 4 mechanics,” Phys. Rev. D 80, 065027 (2009); arXiv:0905. 3770[hep-th].ADSMathSciNetCrossRefGoogle Scholar
  115. 115.
    B. M. Zupnik and D. V. Khetselius, “Three-dimensional extended supersymmetry in the harmonic superspace,” Phys. At. Nucl. 47, 730–735 (1988).Google Scholar
  116. 116.
    B. M. Zupnik, “Harmonic superpotentials and symmetries in gauge theories with eight supercharges,” Nucl. Phys. B 554, 365–390 (1999); Nucl. Phys. B 644, 405E (2002); arXiv:hep-th/9902038.ADSMathSciNetMATHCrossRefGoogle Scholar
  117. 117.
    B. M. Zupnik, “Chern-Simons D = 3, N = 6 superfield theory,” Phys. Lett. B 660, 254–259 (2008); arXiv:0711. 4680[hep-th].ADSMathSciNetMATHCrossRefGoogle Scholar
  118. 118.
    I. L. Buchbinder, E. A. Ivanov, O. Lechtenfeld, N. G. Pletnev, I. B. Samsonov, and B. M. Zupnik, “ABJM models in N = 3 harmonic superspace,” J. High Energy Phys. 0903, 096 (2009); arXiv:0811. 4774[hep-th].ADSMathSciNetCrossRefGoogle Scholar
  119. 119.
    I. L. Buchbinder, E. A. Ivanov, O. Lechtenfeld, N. G. Pletnev, I. B. Samsonov, and B. M. Zupnik, “Quantum N = 3, d = 3 Chern-Simons matter theories in harmonic superspace,” J. High Energy Phys. 0910, 075 (2009); arXiv:0909. 2970[hep-th].ADSMathSciNetCrossRefGoogle Scholar
  120. 120.
    B. M. Zupnik, “Six-dimensional supergauge theories in the harmonic superspace,” Nucl. At. Phys. 44, 512 (1986).Google Scholar
  121. 121.
    P. S. Howe, K. S. Stelle, and P. C. West, “N = 1, d = 6 harmonic superspace,” Classical Quantum Gravity 2, 815–821 (1985).ADSMathSciNetMATHCrossRefGoogle Scholar
  122. 122.
    E. A. Ivanov, A. V. Smilga, and B. M. Zupnik, “Renormalizable supersymmetric gauge theory in six dimensions,” Nucl. Phys. B 726, 131–148 (2005); arXiv:hep-th/0505082.ADSMathSciNetMATHCrossRefGoogle Scholar
  123. 123.
    E. A. Ivanov and A. V. Smilga, “Conformal properties of hypermultiplet actions in six dimensions,” Phys. Lett. B 637, 374–381 (2006); arXiv:hep-th/0510273.ADSMathSciNetMATHCrossRefGoogle Scholar
  124. 124.
    G. Bossard, E. Ivanov, and A. Smilga, “Ultraviolet behavior of 6D supersymmetric Yang–Mills theories and harmonic superspace,” J. High Energy Phys. 1512, 085 (2015); arXiv:1509. 08027[hep-th].ADSMathSciNetCrossRefGoogle Scholar
  125. 125.
    F. Delduc and E. Ivanov, “N = 4 super KdV equation,” Phys. Lett. B 309, 312–319 (1993); arXiv:hepth/9301024.ADSMathSciNetCrossRefGoogle Scholar
  126. 126.
    E. A. Ivanov and A. V. Smilga, “Symplectic sigma models in superspace,” Nucl. Phys. B 694, 473–492 (2004); arXiv:hep-th/0402041.ADSMathSciNetMATHCrossRefGoogle Scholar
  127. 127.
    S. Bellucci, E. Ivanov, and A. Sutulin, “N = 8 mechanics in SU(2) × SU(2) harmonic superspace,” Nucl. Phys. B 722, 297–327 (2005); Nucl. Phys. B 747, 464–465E (2006).ADSMathSciNetMATHCrossRefGoogle Scholar
  128. 128.
    E. Ivanov, “Nonlinear (4, 8, 4) multiplet of N = 8, d = 1 supersymmetry,” Phys. Lett. B 639, 579–585 (2006); arXiv:hep-th/0605194.ADSMathSciNetMATHCrossRefGoogle Scholar
  129. 129.
    F. Delduc and E. Ivanov, “Gauging N = 4 supersymmetric mechanics,” Nucl. Phys. B 753, 211–241 (2006); arXiv:hep-th/0605211; “Gauging N = 4 supersymmetric mechanics II: (1, 4, 3) models from the (4, 4, 0) ones,” Nucl. Phys. B 770, 179–205 (2007); arXiv:hep-th/0611247; “The common origin of linear and nonlinear chiral multiplets in N = 4 mechanics,” Nucl. Phys. B 787, 176–197 (2007); arXiv:0706. 0706[hep-th].ADSMathSciNetMATHCrossRefGoogle Scholar
  130. 130.
    F. Delduc and E. Ivanov, “New model of N = 8 superconformal mechanics,” Phys. Lett. B 654, 200–205 (2007); arXiv:0706. 2472[hep-th].ADSMathSciNetMATHCrossRefGoogle Scholar
  131. 131.
    S. Fedoruk, E. Ivanov, and O. Lechtenfeld, “Supersymmetric Calogero models by gauging,” Phys. Rev. D 79, 105015 (2009); arXiv:0812.4276[hep-th].ADSMathSciNetCrossRefGoogle Scholar
  132. 132.
    E. A. Ivanov, M. A. Konyushikhin, and A. V. Smilga, “SQM with non-abelian self-dual fields: Harmonic superspace description,” J. High Energy Phys. 1005, 033 (2010); arXiv:0912.3289[hep-th].ADSMathSciNetMATHCrossRefGoogle Scholar
  133. 133.
    L. Andrianopoli, S. Ferrara, E. Sokatchev, and B. Zupnik, “Shortening of primary operators in N extended SCFT(4) and harmonic superspace analyticity,” Adv. Theor. Math. Phys. 3, 1149–1197 (1999); arXiv:hep-th/9912007.MathSciNetMATHCrossRefGoogle Scholar
  134. 134.
    M. Arai, E. Ivanov, and J. Niederle, “Massive nonlinear sigma models and BPS domain walls in harmonic superspace,” Nucl. Phys. B 680, 23–50 (2004); arXiv:hep-th/0312037.ADSMathSciNetMATHCrossRefGoogle Scholar
  135. 135.
    C. Devchand and V. Ogievetsky, “Selfdual supergravities,” Nucl. Phys. B 444, 381–400 (1995); arXiv:hepth/9501061.ADSMathSciNetMATHCrossRefGoogle Scholar
  136. 136.
    E. A. Ivanov and B. M. Zupnik, “N = 3 supersymmetric Born-Infeld theory,” Nucl. Phys. B 618, 3–20 (2001); arXiv:hep-th/0110074.ADSMathSciNetMATHCrossRefGoogle Scholar
  137. 137.
    E. Ivanov, O. Lechtenfeld, and B. Zupnik, “Nilpotent deformations of N = 2 superspace,” J. High Energy Phys. 0402, 012 (2004); arXiv:hep-th/0308012.ADSMathSciNetCrossRefGoogle Scholar
  138. 138.
    S. Ferrara, E. Ivanov, O. Lechtenfeld, E. Sokatchev, and B. Zupnik, “Non-anticommutative chiral singlet deformation of N = (1, 1) gauge theory,” Nucl. Phys. B 704, 154–180 (2005); arXiv:hep-th/0405049.ADSMathSciNetMATHCrossRefGoogle Scholar
  139. 139.
    E. Ivanov, O. Lechtenfeld, and B. Zupnik, “Non-anticommutative deformation of N = (1, 1) hypermultiplets,” Nucl. Phys. B 707, 69–86 (2005); arXiv:hepth/0408146.ADSMathSciNetMATHCrossRefGoogle Scholar
  140. 140.
    S. J. Gates, C. M. Hull, and M. Roček, “Twisted multiplets and new supersymmetric non-linear sigma models,” Nucl. Phys. B 248, 157–186 (1984).ADSCrossRefGoogle Scholar
  141. 141.
    E. A. Ivanov, S. O. Krivonos, and V. M. Leviant, “A new class of superconformal sigma models with the Wess-Zumino action,” Nucl. Phys. B 304, 601–627 (1988).ADSMathSciNetCrossRefGoogle Scholar
  142. 142.
    E. A. Ivanov, S. O. Krivonos, and V. M. Leviant, “Quantum N = 3, N = 4 superconformal WZW sigma models,” Phys. Lett. B 215, 689–694 (1988); Phys. Lett. B 221, 432E (1989).ADSMathSciNetCrossRefGoogle Scholar
  143. 143.
    E. Witten, “Dynamical breaking of supersymmetry,” Nucl. Phys. B 188, 513–554 (1981); “Constraints on supersymmetry breaking,” Nucl. Phys. B 202, 253–316 (1982).ADSMATHCrossRefGoogle Scholar
  144. 144.
    A. Pashnev and F. Toppan, “On the classification of N extended supersymmetric quantum mechanical systems,” J. Math. Phys. 42, 5257–5271 (2001); arXiv:hep-th/0010135.ADSMathSciNetMATHCrossRefGoogle Scholar
  145. 145.
    E. A. Ivanov, S. O. Krivonos, and A. I. Pashnev, “Partial supersymmetry breaking in N = 4 supersymmetric quantum mechanics,” Classical Quantum Gravity 8, 19–40 (1991).ADSMathSciNetCrossRefGoogle Scholar
  146. 146.
    E. A. Ivanov and A. V. Smilga, “Dirac operator on complex manifolds and supersymmetric quantum mechanics,” Int. J. Mod. Phys. A 27, 1230024 (2012); arXiv:1012. 2069[hep-th].ADSMathSciNetMATHCrossRefGoogle Scholar
  147. 147.
    S. Fedoruk, E. Ivanov, and O. Lechtenfeld, “Superconformal mechanics,” J. Phys. A: Math. Gen. 45, 173001 (2012); arXiv:1112. 1947[hep-th].ADSMathSciNetMATHCrossRefGoogle Scholar
  148. 148.
    E. Ivanov and S. Sidorov, “Deformed supersymmetric mechanics,” Classical Quantum Gravity 31, 075013 (2014); arXiv:1307. 7690[hep-th]; “Super Káhler oscillator from SU(21) superspace,” J. Phys. A: Math. Gen. 47, 292002 (2014); arXiv:1312. 6821[hep-th].ADSMathSciNetMATHCrossRefGoogle Scholar
  149. 149.
    E. Ivanov, L. Mezincescu, and P. K. Townsend, “Fuzzy CP(NM) as a quantum superspace,” arXiv:hep-th/0311159; “A super-flag Landau model,” arXiv:hep-th/0404108; “Planar super-Landau models,” J. High Energy Phys. 0601, 143 (2006); arXiv:hep-th/0510019.MathSciNetGoogle Scholar
  150. 150.
    T. Curtright, E. Ivanov, L. Mezincescu, and P. K. Townsend, “Planar super-Landau models revisited,” J. High Energy Phys. 0704, 020 (2007); arXiv:hep-th/0612300.ADSMathSciNetCrossRefGoogle Scholar
  151. 151.
    A. Beylin, T. L. Curtright, E. Ivanov, L. Mezincescu, and P. K. Townsend, “Unitary spherical super-Landau models,” J. High Energy Phys. 0810, 069 (2008); arXiv:0806.4716[hep-th].ADSMathSciNetMATHCrossRefGoogle Scholar
  152. 152.
    E. Ivanov, “Supersymmetrizing Landau models,” Theor. Math. Phys. 154, 349–361 (2008); arXiv:0705. 2249[hep-th].MATHCrossRefGoogle Scholar
  153. 153.
    V. Bychkov and E. Ivanov, “N = 4 supersymmetric Landau models,” Nucl. Phys. B 863, 33–64 (2012); arXiv:1202. 4984[hep-th].ADSMathSciNetMATHCrossRefGoogle Scholar
  154. 154.
    J. Bagger and J. Wess, “Partial breaking of extended supersymmetry,” Phys. Lett. B 138, 105–110 (1984).ADSCrossRefGoogle Scholar
  155. 155.
    J. Hughes and J. Polchinski, “Partially broken global supersymmetry and the superstring,” Nucl. Phys. B 278, 147–169 (1986).ADSMathSciNetCrossRefGoogle Scholar
  156. 156.
    S. Bellucci, E. Ivanov, and S. Krivonos, “Superbranes and super-Born-Infeld theories from nonlinear realizations,” Nucl. Phys. Proc. Suppl. 102, 26–41 (2001); arXiv:hep-th/0103136.ADSMathSciNetMATHCrossRefGoogle Scholar
  157. 157.
    E. Ivanov, “Superbranes and super Born-Infeld theories as nonlinear realizations,” Theor. Math. Phys. 129, 1543–1557 (2001); arXiv:hep-th/0105210.MATHCrossRefGoogle Scholar
  158. 158.
    S. Bellucci, E. Ivanov, and S. Krivonos, “N = 2 and N = 4 supersymmetric Born-Infeld theories from nonlinear realizations,” Phys. Lett. B 502, 279–290 (2001); arXiv:hep-th/0012236; “Towards the complete N = 2 superfield Born-Infeld action with partially broken N = 4 supersymmetry,” Phys. Rev. D 64, 025014 (2001); arXiv:hep-th/0101195.ADSMathSciNetMATHCrossRefGoogle Scholar
  159. 159.
    S. Bellucci, E. Ivanov, and S. Krivonos, “Partial breaking of N = 1 D = 10 supersymmetry,” Phys. Lett. B 460, 348–358 (1999); arXiv:hep-th/9811244.ADSCrossRefGoogle Scholar
  160. 160.
    E. A. Ivanov and B. M. Zupnik, “Modified N = 2 supersymmetry and Fayet-Iliopoulos terms,” Phys. At. Nucl. 62, 1043–1055 (1999); arXiv:hep-th/9710236.Google Scholar
  161. 161.
    S. Bellucci, E. Ivanov, and S. Krivonos, “AdS/CFT equivalence transformation,” Phys. Rev. D 66, 086001 (2002); Phys. Rev. D 67, 049901(E) (2003); arXiv:hep-th/0206126; E. Ivanov, “Conformal theories—AdS branes transform, or one more face of AdS/CFT,” Theor. Math. Phys. 139, 513–528 (2004); arXiv:hep-th/0305255.ADSMathSciNetCrossRefGoogle Scholar
  162. 162.
    E. Ivanov, S. Krivonos, and J. Niederle, “Conformal and superconformal mechanics revisited,” Nucl. Phys. B 677, 485–500 (2004); arXiv:hep-th/0210196.ADSMathSciNetMATHCrossRefGoogle Scholar
  163. 163.
    P. Claus, M. Derix, R. Kallosh, J. Kumar, P. K. Townsend, and A. van Proeyen, “Black holes and superconformal mechanics,” Phys. Rev. Lett. 81, 4553–4556 (1998); arXiv:hep-th/9804177.ADSMathSciNetMATHCrossRefGoogle Scholar
  164. 164.
    S. Bellucci, A. Galajinsky, E. Ivanov, and S. Krivonos, “AdS(2)/CFT(1), canonical transformations and superconformal mechanics,” Phys. Lett. B 555, 99–106 (2003); arXiv:hep-th/0212204.ADSMATHCrossRefGoogle Scholar
  165. 165.
    G. Goon, K. Hinterbichler, A. Joyce, and M. Trodden, “Galileons as Wess-Zumino terms,” J. High Energy Phys. 1206, 004 (2012); arXiv:1203. 3191[hep-th].ADSCrossRefGoogle Scholar
  166. 166.
    B. M. Zupnik and D. G. Pak, “Superfield formulation of the simplest three-dimensional gauge theories and conformal supergravities,” Theor. Math. Phys. 77, 1070–1076 (1988).MathSciNetCrossRefGoogle Scholar
  167. 167.
    E. A. Ivanov, “Chern–Simons matter systems with manifest N = 2 supersymmetry,” Phys. Lett. B 268, 203–208 (1991).ADSMathSciNetCrossRefGoogle Scholar
  168. 168.
    B. M. Zupnik, “Three-dimensional 1 = 4 superconformal superfield theories,” Theor. Math. Phys. 162, 74–89 (2010); arXiv:0905. 1179[hep-th].MathSciNetMATHCrossRefGoogle Scholar
  169. 169.
    M. Goykhman and E. Ivanov, “Worldsheet supersymmetry of Pohlmeyer-reduced AdSn × Sn superstrings,” J. High Energy Phys. 1109, 078 (2011); arXiv:1104.0706[hep-th].ADSMathSciNetMATHCrossRefGoogle Scholar
  170. 170.
    M. Grigoriev and A. A. Tseytlin, “Pohlmeyer reduction of AdS5 × S5 superstring sigma model,” Nucl. Phys. B 800, 450–501 (2008); arXiv:0711. 0155[hep-th].ADSMathSciNetMATHCrossRefGoogle Scholar
  171. 171.
    E. Ivanov and J. Lukierski, “Higher spins from nonlinear realizations of OSp(18),” Phys. Lett. B 624, 304–315 (2005); arXiv:hep-th/0505216.ADSMathSciNetMATHCrossRefGoogle Scholar
  172. 172.
    S. Fedoruk and E. Ivanov, “Master higher-spin particle,” Classical Quantum Gravity 23, 5195–5214 (2006); arXiv:hep-th/0604111.ADSMathSciNetMATHCrossRefGoogle Scholar
  173. 173.
    S. Fedoruk, E. Ivanov, and J. Lukierski, “Massless higher spin D = 4 superparticle with both N = 1 super symmetry and its bosonic counterpart,” Phys. Lett. B 641, 226–236 (2006); arXiv:hep-th/0606053.ADSMathSciNetMATHCrossRefGoogle Scholar
  174. 174.
    S. Fedoruk and J. Lukierski, “New spinorial particle model in tensorial space-time and interacting higher spin fields,” J. High Energy Phys. 1302, 128 (2013); arXiv:1210.1506[hep-th].ADSMathSciNetCrossRefGoogle Scholar
  175. 175.
    I. L. Buchbinder, V. A. Krykhtin, and A. Pashnev, “BRST approach to Lagrangian construction for fermionic massless higher spin fields,” Nucl. Phys. B 711, 367–391 (2005); arXiv:hep-th/0410215.ADSMathSciNetMATHCrossRefGoogle Scholar
  176. 176.
    S. M. Kuzenko and S. Theisen, “Nonlinear selfduality and supersymmetry,” Fortsch. Phys. 49, 273–309 (2001); arXiv:hep-th/0007231.ADSMathSciNetMATHCrossRefGoogle Scholar
  177. 177.
    E. A. Ivanov and B. M. Zupnik, “New approach to nonlinear electrodynamics: Dualities as symmetries of interaction,” Phys. At. Nucl. 67, 2188–2199 (2004); arXiv:hep-th/0303192.MathSciNetCrossRefGoogle Scholar
  178. 178.
    E. A. Ivanov and B. M. Zupnik, “Bispinor auxiliary fields in duality-invariant electrodynamics revisited,” Phys. Rev. D 87, 065023 (2013); arXiv:1212.6637[hep-th].ADSCrossRefGoogle Scholar
  179. 179.
    E. A. Ivanov and B. M. Zupnik, “Bispinor auxiliary fields in duality-invariant electrodynamics revisited: the U(N) case,” Phys. Rev. D 88, 045002 (2013); arXiv:1304.1366[hep-th].ADSCrossRefGoogle Scholar
  180. 180.
    E. A. Ivanov, O. Lechtenfeld, and B. M. Zupnik, “Auxiliary tensor fields for Sp(2, R) self-duality,” J. High Energy Phys. 1503, 123 (2015); arXiv:1412.5960[hep-th].MathSciNetCrossRefGoogle Scholar
  181. 181.
    S. M. Kuzenko, “Duality rotations in supersymmetric nonlinear electrodynamics revisited,” J. High Energy Phys. 1303, 153 (2013); arXiv:1301.5194[hep-th].ADSMathSciNetCrossRefGoogle Scholar
  182. 182.
    E. Ivanov, O. Lechtenfeld, and B. Zupnik, “Auxiliary superfields in N = 1 supersymmetric self-dual electrodynamics,” J. High Energy Phys. 1305, 133 (2013); arXiv:1303.5962[hep-th].ADSMathSciNetCrossRefGoogle Scholar
  183. 183.
    E. A. Ivanov and B. M. Zupnik, “Self-dual 1 = 2 Born-Infeld theory through auxiliary superfields,” J. High Energy Phys. 1405, 061 (2014); arXiv:1312.5687[hep-th].ADSMathSciNetMATHCrossRefGoogle Scholar
  184. 184.
    S. Fedoruk and J. Lukierski, “Twistorial versus spacetime formulations: unification of various string models,” Phys. Rev. D 75, 026004 (2007); arXiv:hepth/0606245.ADSMathSciNetCrossRefGoogle Scholar
  185. 185.
    J. A. de Azcarraga, S. Fedoruk, J. M. Izquierdo, and J. Lukierski, “Two-twistor particle models and free massive higher spin fields,” J. High Energy Phys. 1504, 010 (2015); arXiv:1409.7169[hep-th].CrossRefGoogle Scholar
  186. 186.
    M. Piatek and A. R. Pietrykowski, “Classical irregular block, 1 = 2 pure gauge theory and Mathieu equation,” J. High Energy Phys. 1412, 032 (2014); arXiv:1407.0305[hep-th].ADSCrossRefGoogle Scholar
  187. 187.
    O. Kichakova, J. Kunz, E. Radu, and Ya. Shnir, “Non-Abelian fields in AdS4 spacetime: Axially symmetric, composite configurations,” Phys. Rev. D 90, 124012 (2014); arXiv:1409.1894[gr-qc].ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.Bogoliubov Laboratory of Theoretical PhysicsJINRDubnaRussia

Personalised recommendations