Advertisement

Physics of Particles and Nuclei

, Volume 47, Issue 3, pp 291–369 | Cite as

Superfield approach to the construction of effective action in quantum field theory with extended supersymmetry

  • I. L. BuchbinderEmail author
  • E. A. Ivanov
  • N. G. Pletnev
Article

Abstract

We review the current state of research on the construction of effective actions in supersymmetric quantum field theory. Special attention is paid to gauge models with extended supersymmetry in the superfield approach. The advantages of formulation of such models in harmonic superspace for the calculation of effective action are emphasized. Manifestly supersymmetric and manifestly gauge-invariant methods for constructing the low-energy effective actions and deriving the corrections to them are considered and the possibilities to obtain the exact solutions are discussed. The calculations of one-loop effective actions in N = 2 supersymmetric Yang–Mills theory with hypermultiplets and in N = 4 supersymmetric Yang–Mills theory are analyzed in detail. The relationship between the effective action in supersymmetric quantum field theory and the low-energy limit in superstring theory is discussed.

Keywords

Gauge Theory Effective Action Vector Multiplet Mass Shell Mill Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Heisenberg and H. Euler, “Consequences of Dirac’s theory of positrons,” Z. Phys. 98, 714 (1936). http://arxiv.org/abs/physics/0605038ADSzbMATHCrossRefGoogle Scholar
  2. 2.
    J. S. Schwinger, “On gauge invariance and vacuum polarization,” Phys. Rev. 82, 664 (1951).ADSMathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    S. Weinberg, The Quantum Theory of Fields, Vol. 1: Foundations (Univ. Press, Cambridge, 1995).CrossRefGoogle Scholar
  4. 4.
    S. Weinberg, The Quantum Theory of Fields, Vol. 2: Modern Applications (Univ. Press, Cambridge, 1996).zbMATHCrossRefGoogle Scholar
  5. 5.
    S. Weinberg, The Quantum Theory of Fields, Vol. 3: Supersymmetry (Univ. Press, Cambridge, 2000).zbMATHCrossRefGoogle Scholar
  6. 6.
    M. Peskin and D. Schreder, An Introduction to Quantum Field Theory (Addison-Wesley, 1995).Google Scholar
  7. 7.
    I. L. Buchbinder, S. D. Odintsov, and I. L. Shapiro, Effective Action in Quantum Gravity (IOP, Bristol, 1992).Google Scholar
  8. 8.
    B. S. De Witt, Dynamical Theory of Groups and Fields (Gordon and Breach, New York, 1965).Google Scholar
  9. 9.
    B. S. De Witt, The Global Approach to Quantum Field Theory (Univ. Press, Oxford, 2003).Google Scholar
  10. 10.
    N. N. Bogolyubov and D. V. Shirkov, Introduction to the Theory of Quantized Fields (Nauka, Moscow, 1973) [in Russian].zbMATHGoogle Scholar
  11. 11.
    A. A. Slavnov and L. D. Faddeev, Introduction to Quantum Theory of Gauge Fields (Nauka, Moscow, 1978) [in Russian].zbMATHGoogle Scholar
  12. 12.
    I. Ya. Aref’eva, L. D. Faddeev, and A. A. Slavnov, “Generating functional for the S matrix in gaugeinvariant theories,” Theor. Math. Phys. 21, 1165 (1974).CrossRefGoogle Scholar
  13. 13.
    R. E. Kallosh, “The renormalization in nonabelian gauge theories,” Nucl. Phys. B 78, 293 (1974).ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    I. V. Tyutin, “Gauge invariance in field theory and statistical physics in operator formalism,” Preprint LEBEDEV-75-39 (Lebedev Phys. Inst., Moscow, 1975). http://arxiv.org/abs/0812.0580Google Scholar
  15. 15.
    N. D. Birrell and P. C. W. Davies, Quantum Fields in Curved Space (Univ. Press, Cambridge, 1982; Mir, Moscow, 1984).zbMATHGoogle Scholar
  16. 16.
    P. M. Lavrov and I. V. Tyutin, “On the structure of renormalizations in gauge theories,” Yad. Fiz. 34, 277 (1981).MathSciNetGoogle Scholar
  17. 17.
    B. L. Voronov, P. M. Lavrov, and I. V. Tyutin, “Canonical transformations and gauge dependence in general gauge theories,” Yad. Fiz. 36, 498 (1982).MathSciNetzbMATHGoogle Scholar
  18. 18.
    G. A. Vilkovisky, “The unique effective action in quantum field theory,” Nucl. Phys. B 234, 125 (1984).ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    G. A. Vilkovisky, “The gospel according to De Witt,” in Quantum Theory of Gravity, Ed. by S. Christensen (Adam Hilger, Bristol, 1983), p. 169.Google Scholar
  20. 20.
    I. L. Buchbinder, P. M. Lavrov, and S. D. Odintsov, “Unique effective action in Kaluza–Klein quantum theories and spontaneous compactification,” Nucl. Phys. B 308, 191 (1988).ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    E. S. Fradkin and A. A. Tseytlin, “On the new definition of off-shell effective action,” Nucl. Phys. B 234, 509 (1984).ADSCrossRefGoogle Scholar
  22. 22.
    B. S. De Witt, “The effective action,” in Architecture of Fundamental Interactions at Short Distances, Ed. by P. Ramond and R. Stora (North Holland, Amsterdam, 1987), p. 1023.Google Scholar
  23. 23.
    V. A. Fock, “Proper time in classical and quantum mechanics,” Izv. Akad. Nauk SSSR, Ser. Fiz. 4–5, 551 (1937).Google Scholar
  24. 24.
    S. Minakshisundaram, “Eigen functions on Riemannian manifold,” J. Indian Math. Soc. 17, 159 (1953).MathSciNetGoogle Scholar
  25. 25.
    R. T. Seeley, R. Bott, and V. K. Patodi, “Complex powers of an elliptic operator,” Proc. Symp. Pure Math. 10, 288 (1967).MathSciNetCrossRefGoogle Scholar
  26. 26.
    M. F. Atiyah, “On the heat equation and the index theorem,” Invent. Math. 19, 279 (1973).ADSMathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    P. B. Gilkey, “The spectral geometry of a Riemannian manifold,” J. Differ. Geom. 110, 601 (1975).MathSciNetzbMATHGoogle Scholar
  28. 28.
    F. A. Berezin and M. A. Shubin, Schrödinger Equation (Mosk. Gos. Univ, Moscow, 1983) [in Russian].zbMATHGoogle Scholar
  29. 29.
    M. A. Shubin, Pseudodifferential Operators and Spectral Theory (Nauka, Moscow, 1978) [in Russian].zbMATHGoogle Scholar
  30. 30.
    V. P. Maslov and M. V. Fedoryuk, Quasiclassical Approximation for the Equations of Quantum Mechanics (Nauka, Moscow, 1976) [in Russian].zbMATHGoogle Scholar
  31. 31.
    N. E. Hurt, Geometric Quantization in Action: Applications of Harmonic Analysis in Quantum Statistical Mechanics and Quantum Field Theory (Springer, 1983; Mir, Moscow, 1985).zbMATHGoogle Scholar
  32. 32.
    A. O. Barvinsky and G. A. Vilkovisky, “The generalized Schwinger–DeWitt technique in gauge theories and quantum gravity,” Phys. Rep. 119, 1 (1985).ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    I. G. Avramidi, Heat Kernel and Quantum Gravity (Springer, 2000).zbMATHCrossRefGoogle Scholar
  34. 34.
    E. Elizalde, S. D. Odintsov, A. Romeo, A. A. Bytsenko, and S. Zerbini, Zeta Regularization Techniques with Applications (World Sci., 1994).zbMATHCrossRefGoogle Scholar
  35. 35.
    I. Jack and H. Osborn, “Two-loop background field calculations for arbitrary background fields,” Nucl. Phys. B 207, 474 (1982).ADSCrossRefGoogle Scholar
  36. 36.
    J. P. Bornsen and A. E. M. van de Ven, “Three-loop Yang–Mills beta function via the covariant background field method,” Nucl. Phys. B 657, 257 (2003).ADSMathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    S. J. Gates, M. T. Grisaru, M. Roek, and W. Siegel, Superspace, or One Thousand and One Lessons in Supersymmetry (Benjamin Cummings, 1983).zbMATHGoogle Scholar
  38. 38.
    W. Siegel, Fields. http://arxiv.org/abs/hep-th/9912205Google Scholar
  39. 39.
    I. L. Buchbinder and S. M. Kuzenko, Ideas and Methods of Supersymmetry and Supergravity, or a Walk through Superspace (IOP, Bristol, 1998).zbMATHGoogle Scholar
  40. 40.
    S. M. Kuzenko and I. N. McArthur, “On the background field method beyond one loop: A manifestly covariant derivative expansion in super Yang–Mills theories,” J. High Energy Phys. 0305, 015 (2003).ADSMathSciNetCrossRefGoogle Scholar
  41. 41.
    I. L. Buchbinder, E. I. Buchbinder, S. M. Kuzenko, and B. A. Ovrut, “The background field method for N = 2 super Yang–Mills theories in harmonic superspace,” Phys. Lett. B 417, 61 (1998).ADSMathSciNetCrossRefGoogle Scholar
  42. 42.
    I. L. Buchbinder, E. I. Buchbinder, E. A. Ivanov, S. M. Kuzenko, and B. A. Ovrut, “Effective action of the N = 2 Maxwell multiplet in harmonic superspace,” Phys. Lett. B 412, 309 (1997).ADSMathSciNetCrossRefGoogle Scholar
  43. 43.
    I. L. Buchbinder, S. M. Kuzenko, and B. A. Ovrut, “On the D = 4, N = 2 nonrenormalization theorem,” Phys. Lett. B 433, 335 (1998).ADSMathSciNetCrossRefGoogle Scholar
  44. 44.
    E. I. Buchbinder, I. L. Buchbinder, E. A. Ivanov, and S. M. Kuzenko, “Central charge as the origin of holomorphic effective action in N = 2 gauge theory,” Mod. Phys. Lett. A 13, 1071 (1998).ADSMathSciNetCrossRefGoogle Scholar
  45. 45.
    S. Eremin and E. Ivanov, “Holomorphic effective action of N = 2 SYM theory from harmonic superspace with central charges,” Mod. Phys. Lett. A 15, 1859 (2000).ADSMathSciNetzbMATHCrossRefGoogle Scholar
  46. 46.
    P. S. Howe, K. S. Stelle, and P. K. Townsend, “Miraculous ultraviolet cancellations in supersymmetry made manifest,” Nucl. Phys. B 236, 125 (1984).ADSMathSciNetCrossRefGoogle Scholar
  47. 47.
    D. V. Volkov and I. P. Akulov, “Possible universal neutrino interaction,” JETP Lett. 16, 438 (1972).ADSzbMATHGoogle Scholar
  48. 48.
    Yu. A. Gol’fand and E. P. Likhtman, “Extension of the algebra of Poincare group generators and violation of P invariance,” JETP Lett. 13, 323 (1971).ADSGoogle Scholar
  49. 49.
    V. I. Ogievetskii and L. Mezincescu, “Boson-fermion symmetries and superfields,” Sov. Phys. Usp. 18, 960 (1975).ADSMathSciNetCrossRefGoogle Scholar
  50. 50.
    J. Wess and J. Bagger, Supersymmetry and Supergravity (Revised Edition) (Univ. Press, Princeton, 1992).zbMATHGoogle Scholar
  51. 51.
    A. S. Galperin, E. A. Ivanov, V. I. Ogievetsky, and E. S. Sokatchev, Harmonic Superspace (Univ. Press, Cambridge, 2001).zbMATHCrossRefGoogle Scholar
  52. 52.
    E. I. Buchbinder, I. L. Buchbinder, E. A. Ivanov, S. M. Kuzenko, and B. A. Ovrut, “Low-energy effective action in N = 2 supersymmetric field theories,” Phys. Part. Nucl. 32, 641 (2001).Google Scholar
  53. 53.
    M. Green, J. Schwarz, and E. Witten, Superstring Theory (Univ. Press, Cambridge, 1987; Mir, Moscow, 1990).Google Scholar
  54. 54.
    J. Polchinski, String Theory (Univ. Press, Cambridge, 1998).zbMATHCrossRefGoogle Scholar
  55. 55.
    J. H. Schwarz, “Status of superstring and M-theory,” presented at The Erice International School of Subnuclear Physics (2008). http://arxiv.org/abs/0812.1372Google Scholar
  56. 56.
    A. Galperin, E. Ivanov, S. Kalitsyn, V. Ogievetsky, and E. Sokatchev, “Unconstrained N = 2 matter, Yang–Mills and supergravity theories in harmonic superspace,” Classical Quantum Gravity 1, 469 (1984).ADSMathSciNetCrossRefGoogle Scholar
  57. 57.
    A. Galperin, E. A. Ivanov, V. Ogievetsky, and E. Sokatchev, “Harmonic supergraphs. Green functions,” Classical Quantum Gravity 2, 601 (1985).ADSMathSciNetzbMATHCrossRefGoogle Scholar
  58. 58.
    A. Galperin, E. A. Ivanov, V. Ogievetsky, and E. Sokatchev, “Harmonic supergraphs. Feynman rules and examples,” Classical Quantum Gravity 2, 617 (1985).ADSMathSciNetzbMATHCrossRefGoogle Scholar
  59. 59.
    B. M. Zupnik, “Solution of constraints of supergauge theory in the harmonic SU(2)/U(1) superspace,” Theor. Math. Phys. 69, 1101 (1986).MathSciNetCrossRefGoogle Scholar
  60. 60.
    B. M. Zupnik, “The action of the supersymmetric N = 2 gauge theory in harmonic superspace,” Phys. Lett. B 183, 175 (1987).ADSMathSciNetCrossRefGoogle Scholar
  61. 61.
    I. L. Buchbinder, E. A. Ivanov, I. B. Samsonov, and B. M. Zupnik, “Scale invariant low-energy effective action in N = 3 SYM theory,” Nucl. Phys. B 689, 91 (2004).ADSMathSciNetzbMATHCrossRefGoogle Scholar
  62. 62.
    F. A. Berezin, Secondary Quantization Method (Nauka, Moscow, 1986) [in Russian].zbMATHGoogle Scholar
  63. 63.
    V. I. Ogievetskii and I. V. Polubarinov, “The notoph and its possible interactions,” Sov. J. Nucl. Phys. 4, 156 (1966).Google Scholar
  64. 64.
    P. Binetruy, G. Girardi, and R. Grimm, “Supergravity couplings: A geometric formulation,” Phys. Rep. 343, 255 (2001).ADSMathSciNetzbMATHCrossRefGoogle Scholar
  65. 65.
    N. Dragon, E. Ivanov, S. Kuzenko, E. Sokatchev, and U. Theis, “N = 2 rigid supersymmetry with gauged central charge,” Nucl. Phys. B 538, 411 (1999).ADSMathSciNetzbMATHCrossRefGoogle Scholar
  66. 66.
    M. Grana, “Flux compactifications in string theory: A comprehensive review,” Phys. Rep. 423, 91 (2006).ADSMathSciNetCrossRefGoogle Scholar
  67. 67.
    S. M. Kuzenko, “On massive tensor multiplets,” J. High Energy Phys. 0501, 041 (2005).ADSMathSciNetCrossRefGoogle Scholar
  68. 68.
    E. A. Ivanov, “Superbranes and supersymmetric Born–Infeld theories as nonlinear realizations,” Theor. Math. Phys. 129, 1543 (2001).MathSciNetzbMATHCrossRefGoogle Scholar
  69. 69.
    E. A. Ivanov, “Conformal theories–AdS branes transform, or one more face of AdS/CFT,” Theor. Math. Phys. 139, 513 (2004).zbMATHCrossRefGoogle Scholar
  70. 70.
    S. Bellucci, E. Ivanov, and S. Krivonos, “Goldstone superfield actions for partially broken AdS5 supersymmetry,” Phys. Lett. B 558, 182 (2003).ADSMathSciNetzbMATHCrossRefGoogle Scholar
  71. 71.
    S. Bellucci, E. Ivanov, and S. Krivonos, “Goldstone superfield actions in AdS5 backgrounds,” Nucl. Phys. B 672, 123 (2003).ADSMathSciNetzbMATHCrossRefGoogle Scholar
  72. 72.
    N. Seiberg, “The power of holomorphy: Exact results in 4D SUSY field theories.” http://arxiv.org/abs/hepth/9408013Google Scholar
  73. 73.
    N. Seiberg, “Naturalness versus supersymmetric nonrenormalization theorems,” Phys. Lett. B 318, 469 (1993).ADSMathSciNetCrossRefGoogle Scholar
  74. 74.
    N. Seiberg, “Supersymmetry and nonperturbative beta functions,” Phys. Lett. B 206, 75 (1988).ADSMathSciNetCrossRefGoogle Scholar
  75. 75.
    N. Seiberg and E. Witten, “Electric-magnetic duality, monopole condensation, and confinement in N = 2 supersymmetric Yang-Mills theory,” Nucl. Phys. B 426, 19 (1994); Nucl. Phys. B 430, 485 (1994).ADSMathSciNetzbMATHCrossRefGoogle Scholar
  76. 76.
    N. Seiberg and E. Witten, “Monopoles, duality and chiral symmetry breaking in N = 2 supersymmetric QCD,” Nucl. Phys. B 431, 484 (1994).ADSMathSciNetzbMATHCrossRefGoogle Scholar
  77. 77.
    P. C. Argyres, M. R. Plesser, and N. Seiberg, “The moduli space of N = 2 SUSY QCD and duality in N = 1 SUSY QCD,” Nucl. Phys. B 471, 159 (1996).ADSMathSciNetzbMATHCrossRefGoogle Scholar
  78. 78.
    P. C. Argyres, M. R. Plesser, and A. D. Shapere, “N = 2 moduli spaces and N = 1 dualities for SO(nc) and USp(2nc) super-QCD,” Nucl. Phys. B 483, 172 (1997).ADSMathSciNetzbMATHCrossRefGoogle Scholar
  79. 79.
    E. A. Ivanov, S. V. Ketov, and B. M. Zupnik, “Induced hypermultiplet self-interactions in N = 2 gauge theories,” Nucl. Phys. B 509, 53 (1998).ADSMathSciNetzbMATHCrossRefGoogle Scholar
  80. 80.
    H. Osborn, “Topological charges for N = 4 supersymmetric gauge theories and monopoles of spin 1,” Phys. Lett. B 83, 321 (1979).ADSCrossRefGoogle Scholar
  81. 81.
    M. Henningson, “Extended superspace, higher derivatives and SL (2, Z) duality,” Nucl. Phys. B 458, 445 (1996).ADSMathSciNetzbMATHCrossRefGoogle Scholar
  82. 82.
    M. Dine and N. Seiberg, “Comments on higher derivative operators in some SUSY field theories,” Phys. Lett. B 409, 239 (1997).ADSMathSciNetCrossRefGoogle Scholar
  83. 83.
    A. Yung, “Higher derivative terms in the effective action of N = 2 SUSY QCD from instantons,” Nucl. Phys. B 512, 79 (1998).ADSMathSciNetzbMATHCrossRefGoogle Scholar
  84. 84.
    N. Dorey, V. V. Khoze, M. P. Mattis, M. J. Slater, and W. A. Weir, “Instantons, higher derivative terms, and nonrenormalization theorems in supersymmetric gauge theories,” Phys. Lett. B 408, 213 (1997).ADSMathSciNetCrossRefGoogle Scholar
  85. 85.
    V. Periwal and R. von Unge, “Accelerating D-branes,” Phys. Lett. B 430, 71 (1998).ADSMathSciNetCrossRefGoogle Scholar
  86. 86.
    B. de Wit, M. T. Grisaru, and M. Roek, “Nonholomorphic corrections to the one-loop N = 2 super Yang–Mills action,” Phys. Lett. B 374, 297 (1996).ADSMathSciNetCrossRefGoogle Scholar
  87. 87.
    I. L. Buchbinder and S. M. Kuzenko, “Comments on the background field method in harmonic superspace: Nonholomorphic corrections in N = 4 SYM,” Mod. Phys. Lett. A 13, 1623 (1998).ADSMathSciNetCrossRefGoogle Scholar
  88. 88.
    E. I. Buchbinder, I. L. Buchbinder, and S. M. Kuzenko, “Nonholomorphic effective potential in N = 4 SU(n) SYM,” Phys. Lett. B 446, 216 (1999).ADSMathSciNetzbMATHCrossRefGoogle Scholar
  89. 89.
    D. A. Lowe and R. von Unge, “Constraints on higher derivative operators in maximally supersymmetric gauge theory,” J. High Energy Phys. 9811, 014 (1998).ADSMathSciNetzbMATHCrossRefGoogle Scholar
  90. 90.
    E. S. Fradkin and A. A. Tseytlin, “Quantum properties of higher dimensional and dimensionally reduced supersymmetric theories,” Nucl. Phys. B 227, 252 (1983).ADSMathSciNetCrossRefGoogle Scholar
  91. 91.
    I. L. Buchbinder, “Divergences of effective action in external supergauge field,” Yad. Fiz. 36, 509 (1982).Google Scholar
  92. 92.
    T. Ohrndorf, “An example of an explicitly calculable supersymmetric low-energy effective Lagrangian: The Heisenberg–Euler Lagrangian of supersymmetric QED,” Nucl. Phys. B 273, 165 (1986).ADSMathSciNetCrossRefGoogle Scholar
  93. 93.
    T. Ohrndorf, “The effective Lagrangian of supersymmetric Yang–Mills theory,” Phys. Lett. B 176, 421 (1986).ADSMathSciNetCrossRefGoogle Scholar
  94. 94.
    S. M. Kuzenko and Zh. V. Yarevskaya, “Superfield effective action in N = 1, D = 4 supersymmetric gauge theories,” Yad. Fiz. 56, 193 (1993).MathSciNetGoogle Scholar
  95. 95.
    S. M. Kuzenko and S. J. Tyler, “Supersymmetric Euler–Heisenberg effective action: Two-loop results,” J. High Energy Phys. 0705, 081 (2007).ADSMathSciNetCrossRefGoogle Scholar
  96. 96.
    I. N. McArthur and T. D. Gargett, “A ‘Gaussian’ approach to computing supersymmetric effective actions,” Nucl. Phys. B 497, 525 (1997).ADSMathSciNetzbMATHCrossRefGoogle Scholar
  97. 97.
    I. Jack, D. R. T. Jones, and P. West, “Not the norenormalization theorem?” Phys. Lett. B 258, 382 (1991).ADSMathSciNetCrossRefGoogle Scholar
  98. 98.
    I. L. Buchbinder, S. Kuzenko, and Zh. Yarevskaya, “Supersymmetric effective potential: Superfield approach,” Nucl. Phys. B 411, 665 (1994).ADSCrossRefGoogle Scholar
  99. 99.
    I. L. Buchbinder, S. M. Kuzenko, and A. Yu. Petrov, “Superfield effective potential in the two-loop approximation,” Phys. At. Nucl. 59, 148 (1996).Google Scholar
  100. 100.
    I. L. Buchbinder, S. M. Kuzenko, and A. Yu. Petrov, “Superfield chiral effective potential,” Phys. Lett. B 321, 372 (1994).ADSCrossRefGoogle Scholar
  101. 101.
    I. L. Buchbinder and A. Yu. Petrov, “Holomorphic effective potential in general chiral superfield model,” Phys. Lett. B 461, 209 (1999).ADSMathSciNetzbMATHCrossRefGoogle Scholar
  102. 102.
    I. L. Buchbinder, M. Cvetic, and A. Yu. Petrov, “Oneloop effective potential of N = 1 supersymmetric theory and decoupling effects,” Nucl. Phys. B 571, 358 (2000).ADSMathSciNetzbMATHCrossRefGoogle Scholar
  103. 103.
    M. T. Grisaru, M. Roek, and R. von Unge, “Effective Kahler potentials,” Phys. Lett. B 383, 415 (1996).ADSMathSciNetCrossRefGoogle Scholar
  104. 104.
    I. L. Buchbinder, S. M. Kuzenko, and A. Yu. Petrov, “Superfield chiral effective potential,” Phys. Lett. B 321, 372 (1994).ADSCrossRefGoogle Scholar
  105. 105.
    I. L. Buchbinder, M. Cvetic, and A. Yu. Petrov, “Implications of decoupling effects for one loop corrected effective actions from superstring theory,” Mod. Phys. Lett. A 15, 783 (2000)ADSMathSciNetCrossRefGoogle Scholar
  106. 106.
    A. Pickering and P. West, “The one-loop effective super-potential and non-holomorphicity,” Phys. Lett. B 383, 54 (1996).ADSMathSciNetCrossRefGoogle Scholar
  107. 107.
    S. M. Kuzenko and I. N. McArthur, “Effective action of N = 4 super Yang–Mills: N = 2 superspace approach,” Phys. Lett. B 506, 140 (2001).ADSMathSciNetzbMATHCrossRefGoogle Scholar
  108. 108.
    S. M. Kuzenko and I. N. McArthur, “Hypermultiplet effective action: N = 2 superspace approach,” Phys. Lett. B 513, 213 (2001).ADSzbMATHCrossRefGoogle Scholar
  109. 109.
    S. M. Kuzenko and I. N. McArthur, “On the two-loop four-derivative quantum corrections in 4D N = 2 superconformal field theories,” Nucl. Phys. B 683, 3 (2004).ADSMathSciNetzbMATHCrossRefGoogle Scholar
  110. 110.
    S. M. Kuzenko, “Exact propagators in harmonic superspace,” Phys. Lett. B 600, 163 (2004).ADSMathSciNetzbMATHCrossRefGoogle Scholar
  111. 111.
    S. M. Kuzenko, “Self-dual effective action of N = 4 SYM revisited,” J. High Energy Phys. 0503, 008 (2005).ADSMathSciNetCrossRefGoogle Scholar
  112. 112.
    J. W. van Holten, “Rigid symmetries and BRSTinvariance in gauge theories,” Phys. Lett. B 200, 507 (1988).ADSMathSciNetCrossRefGoogle Scholar
  113. 113.
    S. M. Kuzenko and I. N. McArthur, “Quantum metamorphosis of conformal symmetry in N = 4 super Yang–Mills theory,” Nucl. Phys. B 640, 78 (2002).ADSMathSciNetzbMATHCrossRefGoogle Scholar
  114. 114.
    S. M. Kuzenko and I. N. McArthur, “On quantum deformation of conformal symmetry: Gauge dependence via field redefinitions,” Phys. Lett. B 544, 357 (2002).ADSzbMATHCrossRefGoogle Scholar
  115. 115.
    S. M. Kuzenko, I. N. McArthur, and S. Theisen, “Low-energy dynamics from deformed conformal symmetry in quantum 4D N = 2 SCFTs,” Nucl. Phys. B 660, 131 (2003).ADSMathSciNetzbMATHCrossRefGoogle Scholar
  116. 116.
    J. M. Maldacena, “The large N limit of superconformal field theories and supergravity,” Adv. Theor. Math. Phys 2, 231 (1998).ADSMathSciNetzbMATHCrossRefGoogle Scholar
  117. 117.
    R. Gopakumar, “From free fields to AdS,” Phys. Rev. D 70, 025009 (2004).ADSMathSciNetCrossRefGoogle Scholar
  118. 118.
    A. Gorsky and V. Lysov, “From effective actions to the background geometry,” Nucl. Phys. B 718, 293 (2005).ADSMathSciNetzbMATHCrossRefGoogle Scholar
  119. 119.
    E. S. Fradkin and A. A. Tseytlin, “Nonlinear electrodynamics from quantized strings,” Phys. Lett. B 163, 123 (1985).ADSMathSciNetzbMATHCrossRefGoogle Scholar
  120. 120.
    R. R. Metsaev and A. A. Tseytlin, “On loop corrections to string theory effective actions,” Nucl. Phys. B 298, 109 (1988).ADSMathSciNetCrossRefGoogle Scholar
  121. 121.
    A. A. Tseytlin, “Born–Infeld action, supersymmetry and string theory,” in The Many Faces of the Superworld, Ed. by M. A. Shifman (World Sci., 1999), p. 417.Google Scholar
  122. 122.
    M. Born, “On the quantum theory of the electromagnetic field,” Proc. R. Soc. London, Ser. A 143, 410 (1934).ADSzbMATHCrossRefGoogle Scholar
  123. 123.
    M. Born and L. Infeld, “Foundations of the new field theory,” Proc. R. Soc. London, Ser. A 144, 425 (1934).ADSzbMATHCrossRefGoogle Scholar
  124. 124.
    F. Gonzalez-Rey, B. Kulik, I. Y. Park, and M. Rocek, “Self-dual effective action of N = 4 super-Yang–Mills,” Nucl. Phys. B 54, 218 (1999).ADSMathSciNetzbMATHCrossRefGoogle Scholar
  125. 125.
    S. M. Kuzenko and S. Theisen, “Supersymmetric duality rotations,” J. High Energy Phys. 0003, 034 (2000).ADSMathSciNetzbMATHCrossRefGoogle Scholar
  126. 126.
    E. A. Ivanov and B. M. Zupnik, “N = 3 supersymmetric Born–Infeld theory,” Nucl. Phys. B 618, 3 (2001).ADSMathSciNetzbMATHCrossRefGoogle Scholar
  127. 127.
    E. Ivanov, “Towards higher-N superextensions of Born–Infeld theory,” Russ. Phys. J. 45, 695 (2002).MathSciNetzbMATHCrossRefGoogle Scholar
  128. 128.
    S. M. Kuzenko and S. Theisen, “Nonlinear self-duality and supersymmetry,” Fortschr. Phys. 49, 273 (2001).MathSciNetzbMATHCrossRefGoogle Scholar
  129. 129.
    S. Cecotti and S. Ferrara, “Supersymmetric Born–Infeld Lagrangians,” Phys. Lett. B 187, 335 (1987).ADSMathSciNetCrossRefGoogle Scholar
  130. 130.
    E. A. Bergshoeff, M. de Roo, and A. Sevrin, “Towards a supersymmetric non-Abelian Born–Infeld Theory,” Int. J. Mod. Phys. A 16, 750 (2001).ADSMathSciNetzbMATHCrossRefGoogle Scholar
  131. 131.
    S. V. Ketov, “A manifestly N = 2 supersymmetric Born–Infeld action,” Mod. Phys. Lett. A 14, 501 (1999).ADSMathSciNetCrossRefGoogle Scholar
  132. 132.
    S. V. Ketov, “N = 1 and N = 2 supersymmetric nonAbelian Born–Infeld actions from superspace,” Phys. Lett. B 491, 207 (2000).ADSMathSciNetzbMATHCrossRefGoogle Scholar
  133. 133.
    A. Refolli, N. Terzi, and D. Zanon, “Non Abelian N = 2 supersymmetric Born–Infeld action,” Phys. Lett. B 486, 337 (2000).ADSCrossRefGoogle Scholar
  134. 134.
    J. Bagger and A. Galperin, “New Goldstone multiplet for partially broken supersymmetry,” Phys. Rev. D 55, 1091 (1997).ADSMathSciNetCrossRefGoogle Scholar
  135. 135.
    M. Rocek and A. A. Tseytlin, “Partial breaking of global D = 4 supersymmetry, constrained superfields, and 3-brane actions,” Phys. Rev. D 59, 106001 (1999).ADSMathSciNetCrossRefGoogle Scholar
  136. 136.
    S. Bellucci, E. Ivanov, and S. Krivonos, “Superworldvolume dynamics of superbranes from nonlinear realizations,” Phys. Lett. B 482, 233 (2000).ADSMathSciNetzbMATHCrossRefGoogle Scholar
  137. 137.
    S. Bellucci, E. Ivanov, and S. Krivonos, “N = 2 and N = 4 supersymmetric Born–Infeld theories from nonlinear realizations,” Phys. Lett. B 502, 279 (2001).ADSMathSciNetzbMATHCrossRefGoogle Scholar
  138. 138.
    S. Bellucci, E. Ivanov, and S. Krivonos, “Towards the complete N = 2 superfield Born–Infeld action with partially broken N = 4 supersymmetry,” Phys. Rev. D 64, 025014 (2001).ADSMathSciNetCrossRefGoogle Scholar
  139. 139.
    O. Aharony, S. S. Gubser, J. M. Maldacena, H. Ooguri, and Y. Oz, “Large N field theories, string theory and gravity,” Phys. Rep. 323, 183 (2000).ADSMathSciNetCrossRefGoogle Scholar
  140. 140.
    E. D’Hoker and D. Z. Freedman, “Supersymmetric gauge theories and the AdS/CFT correspondence.” http://arxiv.org/abs/hep-th/0201253Google Scholar
  141. 141.
    I. Chepelev and A. A. Tseytlin, “Long-distance interactions of branes: Correspondence between supergravity and super Yang–Mills descriptions,” Nucl. Phys. B 515, 73 (1998).ADSMathSciNetzbMATHCrossRefGoogle Scholar
  142. 142.
    S. Paban, S. Sethi, and M. Stern, “Supersymmetry and higher derivative terms in the effective action of Yang–Mills theories,” J. High Energy Phys. 9806, 012 (1998).ADSMathSciNetzbMATHCrossRefGoogle Scholar
  143. 143.
    J. M. Drummond, P. J. Heslop, P. S. Howe, and S. F. Kerstan, “Integral invariants in N = 4 SYM and the effective action for coincident D-branes,” J. High Energy Phys. 0308, 016 (2003).ADSMathSciNetCrossRefGoogle Scholar
  144. 144.
    I. L. Buchbinder, S. M. Kuzenko, and A. A. Tseytlin, “Low-energy effective actions in N = 2, N = 4 superconformal theories in four dimensions,” Phys. Rev. D 62, 045001 (2000).ADSMathSciNetCrossRefGoogle Scholar
  145. 145.
    I. L. Buchbinder, A. Yu. Petrov, and A. A. Tseytlin, “Two-loop N = 4 super-Yang–Mills effective action and interaction between D3-branes,” Nucl. Phys. B 621, 179 (2002).ADSMathSciNetzbMATHCrossRefGoogle Scholar
  146. 146.
    I. L. Buchbinder and E. A. Ivanov, “Complete N = 4 structure of low-energy effective action in N = 4 superYang-Mills theories,” Phys. Lett. B 524, 208 (2002).ADSMathSciNetzbMATHCrossRefGoogle Scholar
  147. 147.
    I. L. Buchbinder, E. A. Ivanov, and A. Yu. Petrov, “Complete low-energy effective action in N = 4 SYM: A direct N = 2 supergraph calculation,” Nucl. Phys. B 653, 64 (2003).ADSMathSciNetzbMATHCrossRefGoogle Scholar
  148. 148.
    S. V. Ketov, Quantum Non-linear Sigma-Models: From Quantum Field Theory to Supersymmetry, Conformal Field Theory, Black Holes and Strings (Springer, Berlin, 2000).zbMATHCrossRefGoogle Scholar
  149. 149.
    D. V. Volkov, “Phenomenological Lagrangians,” Fiz. Elem. Chastits At. Yadra 4, 3 (1973).MathSciNetGoogle Scholar
  150. 150.
    B. Zumino, “Supersymmetry and Kähler manifolds,” Phys. Lett. B 87, 203 (1979).ADSCrossRefGoogle Scholar
  151. 151.
    L. Alvarez-Gaumé and D. Z. Freedman, “Geometrical structure and ultraviolet finiteness in the supersymmetric s-model,” Commun. Math. Phys. 80, 443 (1981).ADSMathSciNetCrossRefGoogle Scholar
  152. 152.
    N. J. Hitchin, A. Karlhede, U. Lindström, and M. Rocek, “Hyper-Kähler metrics and supersymmetry,” Commun. Math. Phys. 108, 535 (1987).ADSzbMATHCrossRefGoogle Scholar
  153. 153.
    J. Bagger and E. Witten, “Matter coupling in N = 2 supergravity,” Nucl. Phys. B 222, 1 (1983).ADSMathSciNetCrossRefGoogle Scholar
  154. 154.
    S. M. Kuzenko, “Lectures on nonlinear sigma-models in projective superspace,” J. Phys. A 43, 443001 (2010).ADSMathSciNetzbMATHCrossRefGoogle Scholar
  155. 155.
    D. I. Kazakov, “Renormalization properties of softly broken SUSY gauge theories.” http:// arxiv.org/abs/hep-ph/0208200Google Scholar
  156. 156.
    S. Weinberg, “Phenomenological Lagrangians,” Phys. A 96, 327 (1979).CrossRefGoogle Scholar
  157. 157.
    A. A. Slavnov and L. D. Faddeev, “Massless and massive Yang–Mills fields,” Theor. Math. Phys. 3, 312 (1971).CrossRefGoogle Scholar
  158. 158.
    A. A. Slavnov, “Massive gauge fields,” Theor. Math. Phys. 10, 201 (1972).CrossRefGoogle Scholar
  159. 159.
    A. I. Vainshtein and I. B. Khriplovich, “On the zeromass limit and renormalizability in the theory of massive Yang–Mills field,” Yad. Fiz. 13, 198 (1971).Google Scholar
  160. 160.
    M. Veltman, “Perturbation theory of massive Yang–Mills fields,” Nucl. Phys. B 7, 637 (1968).ADSCrossRefGoogle Scholar
  161. 161.
    G. t’Hooft, “Renormalization of massless Yang–Mills fields,” Nucl. Phys. B 33, 173 (1971).ADSMathSciNetCrossRefGoogle Scholar
  162. 162.
    G. t’Hooft, “Renormalizable Lagrangians for massive Yang–Mills fields,” Nucl. Phys. B 35, 167 (1971).ADSCrossRefGoogle Scholar
  163. 163.
    T. C. G. Stueckelberg, “Interaction energy in electrodynamics and in the field theory of nuclear forces,” Helv. Phys. Acta 11, 225 (1938).Google Scholar
  164. 164.
    M. Kalb and P. Ramond, “Classical direct interstring action,” Phys. Rev. D 9, 2273 (1974).ADSCrossRefGoogle Scholar
  165. 165.
    Y. Nambu, “Magnetic and electric confinement of quarks,” Phys. Rep. 23, 250 (1976).ADSCrossRefGoogle Scholar
  166. 166.
    H. Ruegg and M. Ruiz-Altaba, “The Stueckelberg field,” Int. J. Mod. Phys. A 19, 3265 (2004).ADSMathSciNetzbMATHCrossRefGoogle Scholar
  167. 167.
    D. Bettinelli, R. Ferrari, and A. Quadri, “A massive Yang–Mills theory based on the nonlinearly realized gauge group,” Phys. Rev. D 77, 045021 (2008).ADSMathSciNetCrossRefGoogle Scholar
  168. 168.
    E. S. Fradkin and A. A. Tseytlin, “Quantum equivalence of dual field theories,” Ann. Phys. 162, 31 (1985).ADSMathSciNetCrossRefGoogle Scholar
  169. 169.
    I. L. Buchbinder and S. M. Kuzenko, “Quantization of the classically equivalent theories in the superspace of simple supergravity and quantum equivalence,” Nucl. Phys. B 308, 162 (1988).ADSCrossRefGoogle Scholar
  170. 170.
    A. A. Slavnov and S. A. Frolov, “Quantization of nonAbelian antisymmetric tensor field,” Theor. Math. Phys. 75, 470 (1988).MathSciNetCrossRefGoogle Scholar
  171. 171.
    T. Kunimasa and T. Goto, “Generalization of the Stueckelberg formalism to the massive Yang–Mills field,” Prog. Theor. Phys. 37, 452 (1967).ADSCrossRefGoogle Scholar
  172. 172.
    I. Ya. Aref’eva and A. A. Slavnov, “Geometrical origin of the Higgs model,” Theor. Math. Phys. 44, 563 (1980).MathSciNetCrossRefGoogle Scholar
  173. 173.
    G. A. Khelashvili and V. I. Ogievetsky, “Non-renormalizability of the massive N = 2 super-Yang–Mills theory,” Mod. Phys. Lett. A 6, 2143 (1991).ADSCrossRefGoogle Scholar
  174. 174.
    K. Shizuya, “Renormalization of two-dimensional massive Yang–Mills theory and nonrenormalizability of its four-dimensional version,” Nucl. Phys. B 121, 125 (1977).ADSCrossRefGoogle Scholar
  175. 175.
    Yu. N. Kafiev, “Massive Yang–Mills fields: Gauge invariance and one-loop counterterm,” Nucl. Phys. B 201, 341 (1982).ADSMathSciNetCrossRefGoogle Scholar
  176. 176.
    A. A. Slavnov and L. D. Faddeev, “Invariant perturbation theory for nonlinear chiral Lagrangians,” Theor. Math. Phys. 8, 843 (1971).CrossRefGoogle Scholar
  177. 177.
    V. N. Pervushin, “Quantization of chiral theories,” Theor. Math. Phys. 22, 203 (1975).CrossRefGoogle Scholar
  178. 178.
    D. I. Kazakov, V. N. Pervushin, and S. V. Pushkin, “Invariant renormalization for theories with nonlinear symmetry,” Theor. Math. Phys. 31, 389 (1977).MathSciNetCrossRefGoogle Scholar
  179. 179.
    M. A. L. Capri, D. Dudal, J. A. Gracey, V. E. R. Lemes, R. F. Sobreiro, S. P. Sorella, and H. Verschelde, “Study of the gauge invariant, nonlocal mass operator Tr · d 4 xF µv(D 2)–1 F µv in Yang–Mills theories,” Phys. Rev. D 72, 105016 (2005).ADSCrossRefGoogle Scholar
  180. 180.
    G. Cvetic, C. Grosse-Knetter, and R. Kogerler, “Twoand three-vector-boson production in e+e–collisions within the BESS model,” Int. J. Mod. Phys. A 9, 5313 (1994).ADSCrossRefGoogle Scholar
  181. 181.
    J. J. Gomis and S. Weinberg, “Are nonrenormalizable gauge theories renormalizable?” Nucl. Phys. B 469, 473 (1996).ADSMathSciNetzbMATHCrossRefGoogle Scholar
  182. 182.
    I. L. Buchbinder, E. A. Ivanov, O. Lechtenfeld, I. B. Samsonov, and B. M. Zupnik, “Gauge theory in deformed N = (1,1) superspace,” Phys Part. Nucl. 39, 759 (2008)CrossRefGoogle Scholar
  183. 183.
    S. Ferrara, E. Ivanov, O. Lechtenfeld, E. Sokatchev, and B. Zupnik, “Non-anticommutative chiral singlet deformation of N = (1,1) gauge theory,” Nucl. Phys. B 704, 154 (2005).ADSMathSciNetzbMATHCrossRefGoogle Scholar
  184. 184.
    G. G. Volkov and A. A. Maslikov, “Component structure of the N = 2 super-Yang–Mills theory in the harmonic superspace,” Yad. Fiz. 57, 351 (1994).Google Scholar
  185. 185.
    B. A. Ovrut and J. Wess, “Supersymmetric R ξ gauge and radiative symmetry breaking,” Phys. Rev. D 25, 409 (1982).ADSCrossRefGoogle Scholar
  186. 186.
    P. J. Heslop and P. S. Howe, “Aspects of N = 4 SYM,” J. High Energy Phys. 0401, 058 (2004).ADSMathSciNetzbMATHCrossRefGoogle Scholar
  187. 187.
    J. M. Drummond, P. J. Heslop, P. S. Howe, and S. F. Kerstan, “Integral invariants in N = 4 SYM and the effective actions for coincident D-branes,” J. High Energy Phys. 0308, 016 (2003).ADSMathSciNetCrossRefGoogle Scholar
  188. 188.
    P. S. Howe, K. S. Stelle, and P. C. West, “A class of finite four-dimensional supersymmetric field theories,” Phys. Lett. B 124, 55 (1983).ADSCrossRefGoogle Scholar
  189. 189.
    O. Aharony, J. Sonnenschein, S. Theisen, and S. Yankielowicz, “Field theory questions for string theory answers,” Nucl. Phys. B 493, 177 (1997).ADSMathSciNetzbMATHCrossRefGoogle Scholar
  190. 190.
    S. Kachru and E. Silverstein, “4D conformal theories and strings on orbifolds,” Phys. Rev. Lett. 80, 4855 (1998).ADSMathSciNetzbMATHCrossRefGoogle Scholar
  191. 191.
    A. Lawrence, N. Nekrasov, and C. Vafa, “On conformal field theories in four dimensions,” Nucl. Phys. B 533, 199 (1998).ADSMathSciNetzbMATHCrossRefGoogle Scholar
  192. 192.
    M. R. Douglas and G. W. Moore, “D-branes, quivers, and ALE instantons.” http://arxiv.org/abs/hep-th/9603167Google Scholar
  193. 193.
    A. A. Tseytlin and K. Zarembo, “Magnetic interactions of D-branes and Wess–Zumino terms in super Yang–Mills effective actions,” Phys. Lett. B 474, 95 (2000).ADSMathSciNetzbMATHCrossRefGoogle Scholar
  194. 194.
    K. A. Intriligator, “Anomaly matching and a Hopf–Wess–Zumino term in six-dimensional, N = (2,0) field theories,” Nucl. Phys. B 581, 257 (2000).ADSMathSciNetzbMATHCrossRefGoogle Scholar
  195. 195.
    P. C. Argyres, A. M. Awad, G. A. Braun, and F. P. Esposito, “Higher-derivative terms in N = 2 supersymmetric effective actions,” J. High Energy Phys. 0307, 060 (2003).ADSMathSciNetCrossRefGoogle Scholar
  196. 196.
    J. Louis and A. Micu, “Type II theories compactified on Calabi–Yau threefolds in the presence of background fluxes,” Nucl. Phys. B 635, 395 (2002).ADSMathSciNetzbMATHCrossRefGoogle Scholar
  197. 197.
    J. Louis and W. Schulgin, “Massive tensor multiplets in N = 1 supersymmetry,” Fortschr. Phys. 53, 235 (2005).MathSciNetzbMATHCrossRefGoogle Scholar
  198. 198.
    R. D’Auria, L. Sommovigo, and S. Vaula, “N = 2 supergravity Lagrangian coupled to tensor multiplets with electric and magnetic fluxes,” J. High Energy Phys. 0411, 028 (2004).MathSciNetCrossRefGoogle Scholar
  199. 199.
    R. D’Auria and S. Ferrara, “Dyonic masses from conformal field strengths in D even dimensions,” Phys. Lett. B 606, 211 (2005).ADSMathSciNetzbMATHCrossRefGoogle Scholar
  200. 200.
    W. Siegel, “Hidden ghosts,” Phys. Lett. B 93, 170 (1980).ADSMathSciNetCrossRefGoogle Scholar
  201. 201.
    E. Sezgin and P. van Nieuwenhuizen, “Renormalizability properties of antisymmetric tensor fields coupled to gravity,” Phys. Rev. D 22, 301 (1980).ADSMathSciNetCrossRefGoogle Scholar
  202. 202.
    M. J. Duff and P. van Nieuwenhuizen, “Quantum inequivalence of different field representations,” Phys. Lett. B 94, 179 (1980).ADSCrossRefGoogle Scholar
  203. 203.
    M. T. Grisaru, N. K. Nielsen, W. Siegel, and D. Zanon, “Energy-momentum tensors, supercurrents, (super)traces and quantum equivalence,” Nucl. Phys. B 247, 157 (1984).ADSMathSciNetCrossRefGoogle Scholar
  204. 204.
    F. Bastianelli, P. Benincasa, and S. Giombi, “Worldline approach to vector and antisymmetric tensor fields,” J. High Energy Phys. 0504, 010 (2005).ADSMathSciNetCrossRefGoogle Scholar
  205. 205.
    F. Bastianelli, P. Benincasa, and S. Giombi, “Worldline approach to vector and antisymmetric tensor fields. II,” J. High Energy Phys. 0510, 114 (2005).ADSMathSciNetCrossRefGoogle Scholar
  206. 206.
    J. Scherk and J. H. Schwarz, “How to get masses from extra dimensions,” Nucl. Phys. B 153, 61 (1979).ADSMathSciNetCrossRefGoogle Scholar
  207. 207.
    P. S. Howe and P. C. West, “Superconformal invariants and extended supersymmetry,” Phys. Lett. B 400, 307 (1997).ADSMathSciNetCrossRefGoogle Scholar
  208. 208.
    P. S. Howe and P. C. West, “3-point functions in N = 4 Yang–Mills,” Phys. Lett. B 444, 341 (1998).ADSMathSciNetCrossRefGoogle Scholar
  209. 209.
    S. M. Kuzenko and S. Theisen, “Correlation functions of conserved currents in N = 2 superconformal theory,” Classical Quantum Gravity 17, 665 (2000).ADSMathSciNetzbMATHCrossRefGoogle Scholar
  210. 210.
    A. Galperin, E. Ivanov, V. Ogievetsky, and E. Sokatchev, “Hyperkahler metrics and harmonic superspace,” Commun. Math. Phys. 103, 515 (1986).ADSMathSciNetzbMATHCrossRefGoogle Scholar
  211. 211.
    N. G. Pletnev and A. T. Banin, “Covariant technique of derivative expansion of one-loop effective action,” Phys. Rev. D 60, 105017 (1999).ADSCrossRefGoogle Scholar
  212. 212.
    N. G. Pletnev and A. T. Banin, “Application of symbol operator technique for effective action computation,” Int. J. Mod. Phys. A 17, 825 (2002).ADSMathSciNetCrossRefGoogle Scholar
  213. 213.
    A. T. Banin, I. L. Buchbinder, and N. G. Pletnev, “Low-energy effective action of N = 2 gauge multiplet induced by hypermultiplet matter,” Nucl. Phys. B 598, 371 (2001).ADSMathSciNetzbMATHCrossRefGoogle Scholar
  214. 214.
    A. T. Banin, I. L. Buchbinder, and N. G. Pletnev, “On low-energy effective action in N = 2 super Yang–Mills theories on non-Abelian background,” Phys. Rev. D 66, 045021 (2002).ADSCrossRefGoogle Scholar
  215. 215.
    A. T. Banin, I. L. Buchbinder, and N. G. Pletnev, “One-loop effective action for N = 4 SYM theory in the hypermultiplet sector: Leading low-energy approximation and beyond,” Phys. Rev. D 68, 065024 (2003).ADSCrossRefGoogle Scholar
  216. 216.
    I. L. Buchbinder and N. G. Pletnev, “Construction of one-loop N = 4 SYM effective action on the mixed branch in the harmonic superspace approach,” J. High Energy Phys. 0509, 073 (2005).ADSMathSciNetCrossRefGoogle Scholar
  217. 217.
    A. T. Banin, I. L. Buchbinder, and N. G. Pletnev, “On quantum properties of the four-dimensional generic chiral superfield model,” Phys. Rev. D 74, 045010 (2006).ADSCrossRefGoogle Scholar
  218. 218.
    I. L. Buchbinder and N. G. Pletnev, “Hypermultiplet dependence of one-loop effective action in the N = 2 superconformal theories,” J. High Energy Phys. 0704, 096 (2007).ADSMathSciNetCrossRefGoogle Scholar
  219. 219.
    I. L. Buchbinder and N. G. Pletnev, “One-loop effective action in the N = 2 supersymmetric massive Yang–Mills field theory,” Theor. Math. Phys. 157, 1383 (2008).MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • I. L. Buchbinder
    • 1
    Email author
  • E. A. Ivanov
    • 2
  • N. G. Pletnev
    • 1
    • 3
  1. 1.Center for Theoretical PhysicsTomsk State Pedagogical UniversityTomskRussia
  2. 2.Bogoliubov Laboratory of Theoretical PhysicsJoint Institute for Nuclear ResearchDubnaRussia
  3. 3.Laboratory of Theoretical Physics, Sobolev Institute of Mathematics, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations