Physics of Particles and Nuclei

, Volume 46, Issue 5, pp 794–796 | Cite as

Composite fermions in medium: Extending the Lipkin model



The role of phase space occupation effects for the formation of twoand three-particle bound states in a dense medium is investigated within an algebraic approach suitable for systems with short-range interactions. It is shown that for two-fermion bound states due to the account of the exchange symmetry (phase space occupation) effect (Pauli blocking) in a dense medium the binding energy is reduced and vanishes at a critical density (Mott effect). For three-fermion bound states, within a Faddeev equation approach, the intermediate formation of pair correlations leads to the representation as a suitably symmetrized fermion-boson bound state. It is shown that the Bose enhancement of fermion pairs can partially compensate the Pauli blocking between the fermions. This leads to the general result obtained by algebraic methods: three-fermion bound states in a medium with high phase space occupation appear necessarily as Borromean states beyond the Mott density of the two-fermion bound state.


Quark Matter Composite Fermion Electron Hole Plasma Nonideal Plasma Pauli Blocking 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Lipkin, Quantum Mechanics Rehovot (Weizmann Institute, 1973).Google Scholar
  2. 2.
    M. V. Zhukov, B. V. Danilin, D. V. Fedorov, et al., “Bound state properties of Borromean Halo nuclei: He-6 and Li-11,” Phys. Rep. 231, 151 (1993).CrossRefADSGoogle Scholar
  3. 3.
    H. Stolz and R. Zimmermann, “Correlated pairs and a mass action law in two-component Fermi systems excitons in an electron-hole plasma,” Phys. Status Sol., B 94, 135–146 (1979).CrossRefADSGoogle Scholar
  4. 4.
    D. Kremp, M. Schlanges, and W.-D. Kraeft, Quantum Statistics of Nonideal Plasmas (Springer, Heidelberg, 2005).Google Scholar
  5. 5.
    M. Schmidt, G. Röpke, and H. Schulz, “Generalized Beth-Uhlenbeck approach for hot nuclear matter,” Annals Phys. 202, 57–99 (1990).CrossRefADSGoogle Scholar
  6. 6.
    D. Blaschke, M. Buballa, A. Dubinin, et al., “Generalized Beth–Uhlenbeck approach to mesons and diquarks in hot, dense quark matter,” Annals Phys. 348, 228–255 (2014).MathSciNetCrossRefADSGoogle Scholar
  7. 7.
    D. Zablocki, D. Blaschke, and G. Röpke, “BEC-BCS crossover in strongly interacting matter,” in Metal-toNonmetal Transitions, Ed. by R. Redmer and B. Holst (Springer, Berlin Heidelberg, 2010), pp. 63–84.Google Scholar
  8. 8.
    E. Blanqier, “Standard particles in the SU(3) Nambu–Jona-Lasinio model and the Polyakov–NJL model,” J. Phys., G 38, 105003 (2011).Google Scholar
  9. 9.
    D. Blaschke, M. Buballa, A. Dubinin, and D. Zablocki, “(P)NJL model approach to diquarks and baryons in quark matter,” in Proceedings of the XXII Baldin Seminar on High-Energy Physics Problems, Dubna, 2014, PoS (Baldin ISHEPP XXII) 083.Google Scholar
  10. 10.
    G. Röpke, N.-U. Bastian, D. Blaschke, et al., “Cluster virial expansion for nuclear matter within a quasiparticle statistical approach,” Nucl. Phys., A 897, 70 (2013).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.Institute of Theoretical PhysicsTU Bergakademie FreibergFreibergGermany
  2. 2.Instytut Fizyki TeoretycznejUniwersytet WrocławskiWrocławPoland
  3. 3.Joint Institute for Nuclear ResearchDubnaRussia

Personalised recommendations