Physics of Particles and Nuclei

, Volume 46, Issue 5, pp 849–853 | Cite as

Cooling of neutron stars and hybrid stars with a stiff hadronic EoS

Article

Abstract

Within the “nuclear medium cooling” scenario of neutron stars all reliably known temperature—age data, including those of the central compact objects in the supernova remnants of Cassiopeia A and XMMU-J1732, can be comfortably explained by a set of cooling curves obtained by variation of the star mass within the range of typical observed masses. The recent measurements of the masses of the pulsars PSR J1616-2230, PSR J0348-0432 and J00737-3039B and the companion of J1756-2251 provide independent proof for the existence of neutron stars with masses in a broad range from 1.2 to 2M The values M > 2M call for sufficiently stiff equations of state for neutron star matter. We investigate the response of the set of neutron star cooling curves to a stiffening of the nuclear equation of state so that maximum masses of about 2.4M would be accessible and to a deconfinement phase transition from such stiff nuclear matter in the outer core to color superconducting quark matter in the inner core. Without a readjustment of cooling inputs the mass range required to cover all cooling data for the stiff DD2 equation of state should include masses of 2.426M for describing the fast cooling of CasA while the existence of a quark matter core accelerates the cooling so that CasA cooling data are described with a hybrid star of mass 1.674M.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Tananbaum, “Cassiopeia A,” IAU Circ. 7246, 1 (1999)ADSGoogle Scholar
  2. 1a.
    J. P. Hughes, C. E. Rakowski, D. N. Burrows, and P. O. Slane, “Nucleosynthesis and mixing in Cassiopeia A,” Astrophys. J. 528, L109 (2000).CrossRefADSGoogle Scholar
  3. 2.
    W. B. Ashworth, Jr., “A probable Flamsteed observation of the Cassiopeia-A supernova,” J. Hist. Astron. 11, 1 (1980).CrossRefADSGoogle Scholar
  4. 3.
    W. C. G. Ho and C. O. Heinke, “A neutron star with a carbon atmosphere in the Cassiopeia A supernova remnant,” Nature 462, 71 (2009).CrossRefADSGoogle Scholar
  5. 4.
    C. O. Heinke and W. C. G. Ho, “Direct observation of the cooling of the Cassiopeia A neutron star,” Astrophys. J. 719, L167 (2010).CrossRefADSGoogle Scholar
  6. 5.
    K. G. Elshamouty, C. O. Heinke, G. R. Sivakoff, et al., “Measuring the cooling of the neutron star in Cassiopeia A with all Chandra X-ray observatory detectors,” Astrophys. J. 777, 22 (2013).CrossRefADSGoogle Scholar
  7. 6.
    D. G. Yakovlev, W. C. G. Ho, P. S. Shternin, et al., “Cooling rates of neutron stars and the young neutron star in the Cassiopeia A supernova remnant,” Mon. Not. R. Astron. Soc. 411, 1977 (2011).CrossRefADSGoogle Scholar
  8. 7.
    D. Klochkov, V. Suleimanov, G. Pühlhofer, et al., “The neutron star in HESSJ1731-347: central compact objects as laboratories to study the equation of state of superdense matter,” Astron. Astrophys. 573, A53 (2015).CrossRefADSGoogle Scholar
  9. 8.
    D. N. Voskresensky, “Neutrino cooling of neutron stars: Medium effects,” Lect. Notes Phys. 578, 467 (2001).CrossRefADSGoogle Scholar
  10. 9.
    D. N. Voskresensky and A. V. Senatorov, “Emission of neutrinos by neutron stars,” Sov. Phys. JETP 63, 885 (1986).Google Scholar
  11. 10.
    P. Demorest, T. Pennucci, S. Ransom, et al., “Shapiro delay measurement of a two solar mass neutron star,” Nature 467, 1081 (2014).CrossRefADSGoogle Scholar
  12. 11.
    J. Antoniadis, P. C. C. Freire, N. Wex, et al., “A massive pulsar in a compact relativistic binary,” Science 340, 6131 (2013).CrossRefADSGoogle Scholar
  13. 12.
    M. Kramer, I. H. Stairs, R. N. Manchester, et al., “Tests of general relativity from timing the double pulsar,” Science 314, 97 (2006).CrossRefADSGoogle Scholar
  14. 13.
    A. J. Faulkner, M. Kramer, A. G. Lyne, et al., “PSR J1756-2251: a new relativistic double neutron star system,” Astroph. J. 618, L119 (2004).CrossRefADSGoogle Scholar
  15. 14.
    G. Schaab, D. Voskresensky, A. D. Sedrakian, et al., “Impact of medium effects on the cooling of nonsuperfluid and superfluid neutron stars,” Astron. Astrophys. 321, 591 (1997).ADSGoogle Scholar
  16. 15.
    D. Blaschke, H. Grigorian, and D. N. Voskresensky, “Cooling of neutron stars: Hadronic model,” Astron. Astrophys. 424, 979 (2004).CrossRefADSGoogle Scholar
  17. 16.
    D. Blaschke, H. Grigorian, D. N. Voskresensky, and F. Weber, “On the cooling of the neutron star in Cassiopeia A,” Phys. Rev., C 85, 022802 (2012).CrossRefADSGoogle Scholar
  18. 17.
    D. Blaschke, H. Grigorian, and D. N. Voskresensky, “Nuclear medium cooling scenario in the light of new Cas A cooling data and the 2M pulsar mass measurements,” Phys. Rev., C 88, 065805 (2013).CrossRefADSGoogle Scholar
  19. 18.
    D. N. Voskresensky and A. V. Senatorov, “Description of nuclear interaction in Keldysh’s diagram technique and neutrino luminosity of neutron stars,” Sov. J. Nucl. Phys. 45, 411 (1987).Google Scholar
  20. 19.
    E. E. Kolomeitsev and D. N. Voskresensky, “Neutrino emission due to Cooper-pair recombination in neutron stars revisited,” Phys. Rev., C 77, 065808 (2008).CrossRefADSGoogle Scholar
  21. 20.
    T. Klähn, D. Blaschke, S. Typel, et al., “Constraints on the high-density nuclear equation of state from the phenomenology of compact stars and heavy-ion collisions,” Phys. Rev., C 74, 035802 (2006).CrossRefADSGoogle Scholar
  22. 21.
    S. Bogdanov, “The nearest millisecond pulsar revisited with Newton: Improved mass-radius constraints for PSR J0437-4715,” Astrophys. J. 762, 96 (2013).CrossRefADSGoogle Scholar
  23. 22.
    M. Alford, D. Blaschke, A. Drago, et al., “Quark matter in compact stars?,” Nature 445, E7 (2007).CrossRefADSGoogle Scholar
  24. 23.
    T. Klähn, D. Blaschke, F. Sandin, et al., “Modern compact star observations and the quark matter equation of state,” Phys. Lett., B 654, 170 (2007).CrossRefADSGoogle Scholar
  25. 24.
    T. Klähn, R. Lastowiecki, and D. Blaschke, “Implications of the measurement of pulsars with two solar masses for quark matter in compact stars and HIC. A NJL model case study,” Phys. Rev., D 88, 085001 (2013).CrossRefADSGoogle Scholar
  26. 25.
    R. W. Romani, A. V. Filippenko, J. M. Silverman, et al., “PSR J1311-3430: A heavyweight neutron star with a flyweight helium companion,” Astrophys. J. Lett. 760, L36 (2012).CrossRefADSGoogle Scholar
  27. 26.
    S. Typel, G. Röpke, T. Klähn, et al., “Composition and thermodynamics of nuclear matter with light clusters,” Phys. Rev., C 81, 015803 (2010).CrossRefADSGoogle Scholar
  28. 27.
    H. Heiselberg and M. Hjorth-Jensen, “Phase transitions in neutron stars and maximum masses,” Astrophys. J. 525, L45 (1999).CrossRefADSGoogle Scholar
  29. 28.
    S. Typel and H. H. Wolter, “Relativistic mean field calculations with density dependent meson nucleon coupling,” Nucl. Phys., A 656, 331 (1999).CrossRefADSGoogle Scholar
  30. 29.
    P. Danielewicz and J. Lee, “Symmetry energy II: Isobaric analog states,” Nucl. Phys., A 922, 1 (2014).CrossRefADSGoogle Scholar
  31. 30.
    K. Hebeler, J. M. Lattimer, C. J. Pethick, and A. Schwenk, “Constraints on neutron star radii based on chiral effective field theory interactions,” Phys. Rev. Lett. 105, 161102 (2010).CrossRefADSGoogle Scholar
  32. 31.
    P. Danielewicz, R. Lacey, and W. G. Lynch, “Determination of the equation of state of dense matter,” Science 298, 1592 (2002).CrossRefADSGoogle Scholar
  33. 32.
    R. Lastowiecki, D. Blaschke, H. Grigorian, and S. Typel, “Strangeness in the cores of neutron stars,” Acta Phys. Polon. Supp. 5, 535 (2012).CrossRefGoogle Scholar
  34. 33.
    L. Bonanno and A. Sedrakian, “Composition and stability of hybrid stars with hyperons and quark color-superconductivity,” Astron. Astrophys. 539, A16 (2012).CrossRefADSGoogle Scholar
  35. 34.
    H. Grigorian, D. Blaschke, and D. Voskresensky, “Cooling of neutron stars with color superconducting quark cores,” Phys. Rev., C 71, 045801 (2005).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • H. Grigorian
    • 1
    • 2
  • D. Blaschke
    • 3
    • 4
  • D. N. Voskresensky
    • 5
  1. 1.Laboratory for Information TechnologiesJINRDubnaRussia
  2. 2.Department of PhysicsYerevan State UniversityYerevanArmenia
  3. 3.Instytut Fizyki TeoretycznejUniwersytet WrocławskiWrocławPoland
  4. 4.Bogoliubov Laboratory for Theoretical PhysicsJINRDubnaRussia
  5. 5.National Research Nuclear UniversityMEPhIMoscowRussia

Personalised recommendations