Physics of Particles and Nuclei

, Volume 46, Issue 5, pp 854–857 | Cite as

New Bayesian analysis of hybrid EoS constraints with mass-radius data for compact stars

  • A. Ayriyan
  • D. E. Alvarez-Castillo
  • D. Blaschke
  • H. Grigorian
  • M. Sokolowski


We suggest a new Bayesian analysis using disjunct mass and radius constraints for extracting probability measures for cold, dense nuclear matter equations of state. One of the key issues of such an analysis is the question of a deconfinement transition in compact stars and whether it proceeds as a crossover or rather as a first order transition. The latter question is relevant for the possible existence of a critical endpoint in the QCD phase diagram under scrutiny in present and upcoming heavy-ion collision experiments.


Neutron Star Compact Star Massive Neutron Star Radius Constraint Strange Hadronic Matter 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. Chamel and P. Haensel, “Physics of neutron star crusts,” Living Rev. Relat. 11, 10 (2008).ADSGoogle Scholar
  2. 2.
    I. Bednarek, “Hyperon star,” Acta Phys. Pol., B 40, 3071 (2009).ADSGoogle Scholar
  3. 3.
    P. Demorest et al., “A two-solar-mass neutron star measured using Shapiro delay,” Nature 467, 1081 (2010).CrossRefADSGoogle Scholar
  4. 4.
    J. Antoniadis et al., “A massive pulsar in a compact relativistic binary,” Science 340, 6131 (2013).CrossRefADSGoogle Scholar
  5. 5.
    P. Papazoglou et al., “Chiral Lagrangian for strange hadronic matter,” Phys. Rev., C 57, 2576 (1998).CrossRefADSGoogle Scholar
  6. 6.
    P. Papazoglou et al., “Nuclei in a chiral SU(3) model,” Phys. Rev., C 59, 411 (1999).CrossRefADSGoogle Scholar
  7. 7.
    I. Bednarek and R. Manka, “The role of nonlinear vector meson interactions in hyperon stars,” J. Phys., G 36, 095201 (2009).CrossRefGoogle Scholar
  8. 8.
    I. Bednarek et al., “Hyperons in neutron-star cores and a 2Mpulsar,” Astron. Astrophys. 543, A157 (2012).CrossRefADSGoogle Scholar
  9. 9.
    Y. Sugahara and H. Toki, “Relativistic mean field theory for lambda hypernuclei and neutron stars,” Progr. Theor. Phys. 92, 803 (1994).CrossRefADSGoogle Scholar
  10. 10.
    C. J. Horowitz and J. Piekarewicz, “Neutron star structure and the neutron radius of 208Pb,” Phys. Rev. Lett. 86, 5647 (2004).CrossRefADSGoogle Scholar
  11. 11.
    J. Schaffner and I. N. Mishustin, “Hyperon-rich matter in neutron stars,” Phys. Rev., C 53, 1416 (1995).CrossRefADSGoogle Scholar
  12. 12.
    G. A. Lalazissis et al., New parametrization for the Lagrangian density of relativistic mean field theory," Phys. Rev., C 55, 540 (1997).CrossRefADSGoogle Scholar
  13. 13.
    B. Todd-Rutel and J. Piekarewicz, “Neutron-rich nuclei and neutron stars: a new accurately calibrated interaction for the study of neutron-rich matter,” Phys. Rev. Lett. 95, 122501 (2005).CrossRefGoogle Scholar
  14. 14.
    G. Baym et al., “The ground state of matter at high densities: equation of state and stellar models,” Astrophys. J. 170, 299 (1971).CrossRefADSGoogle Scholar
  15. 15.
    G. Baym et al., “Neutron star matter,” Nucl. Phys., A 175, 225 (1971).CrossRefADSGoogle Scholar
  16. 16.
    S. Weissenborn et al., “Hyperons and massive neutron stars: the role of hyperon potentials,” Nucl. Phys., A 881, 62 (2012).CrossRefADSGoogle Scholar
  17. 17.
    S. Typel, G. Röpke, T. Klähn, D. Blaschke and H. H. Wolter. Composition and thermodynamics of nuclear matter with light clusters. Phys. Rev. C 81, 015803 (2010).CrossRefADSGoogle Scholar
  18. 18.
    S. Benic, D. Blaschke, D. E. Alvarez-Castillo, T. Fischer and S. Typel. A new quark-hadron hybrid equation of state for astrophysics I. Highmass twin compact stars. Astronomy and Astrophysics (2014), (submitted); [arXiv:1411.2856 [astro-ph.HE]].Google Scholar
  19. 19.
    S. Bogdanov. The Nearest Millisecond Pulsar Revisited with XMMNewton: Improved Mass-radius Constraints for PSR J0437-4715. Astrophysical J. 762, iss. 2, 96 (2013).Google Scholar
  20. 20.
    F. S. Kitaura, H.-Th. Janka and W. Hillebrandt. Explosions of O-NeMg cores, the Crab supernova, and subluminous type II-P supernovae. Astron. Astrophys. 450, 1, 345, (2006).CrossRefADSGoogle Scholar
  21. 21.
    P. Podsiadlowski, J. D. M. Dewi, P. Lesaffre, J. C. Miller, W. G. Newton and J. R. Stone, The Double pulsar J0737-3039: Testing the neutron star equation of state. Mon. Not. R. Astron. Soc (2005), vol. 361, p. 1243.CrossRefADSGoogle Scholar
  22. 22.
    D. Blaschke, D. E. Alvarez-Castillo, S. Benic, G. Contrera, R. Lastowiecki. Nonlocal PNJL models and heavy hybrid stars. PoS ConfinementX (2012), 249; [arXiv:1302.6275 [hep-ph].Google Scholar
  23. 23.
    D. Blaschke, D. E. Alvarez-Castillo and S. Benic, Mass-radius constraints for compact stars and a critical endpoint. PoS CPOD 2013 (2013), 063; [arXiv: 1310.3803 [nucl-th]].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • A. Ayriyan
    • 1
  • D. E. Alvarez-Castillo
    • 2
    • 3
  • D. Blaschke
    • 2
    • 4
  • H. Grigorian
    • 1
    • 5
  • M. Sokolowski
    • 4
  1. 1.Laboratory of Information TechnologiesJINRDubnaRussia
  2. 2.Bogoliubov Laboratory of Theoretical PhysicsJINRDubnaRussia
  3. 3.Instituto de FísicaUniversidad Autónoma de San Luis PotosíSan Luis PotosíMéxico
  4. 4.Institute of Theoretical PhysicsUniversity of WroclawWroclawPoland
  5. 5.Department of PhysicsYerevan State UniversityYerevanArmenia

Personalised recommendations