Physics of Particles and Nuclei

, Volume 46, Issue 3, pp 366–423 | Cite as

On the development of the quantitative texture analysis and its application in solving problems of the Earth sciences

Article

Abstract

A history of texture analysis (TA) evolution is shown, beginning from the first experimental and theoretical attempts to find and characterize preferred orientations of crystal lattices of grains in real polycrystalline samples. Stages of formation of TA theoretical apparatus, its basic elements, and also application of its capabilities for quantitatively describing anisotropic properties of textured samples are discussed. Attention is also paid to the limitations and difficulties associated with the analysis. The application of the quantitative TA apparatus is demonstrated by example describing elastic properties of textured materials up to multiphase samples containing pores and cracks. A wide scope of TA includes the analysis based on neutron scattering which has been effectively developed at the Frank Laboratory of Neutron Physics. A practical opportunity to determine the bulk crystallographic textures of single-phase and multiphase materials is offered by the use of modern neutron diffractometers, including the SKAT diffractometer at the IBR-2 pulsed reactor. This is especially important for studying samples of natural rocks. The examples given show how the neutron scattering data for the quantitative TA are used in combination with other physical and petrological methods for solving fundamental problems of geology and geophysics based on the analysis of a structure and properties of the Earth’s lithosphere matter. The review includes a detailed list of references of original works concerning the TA elaboration, overview publications and monographs, and also information on the most popular TA-related software.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. N. Nikitin and T. I. Ivankina, “Neutron diffractometry in geosciences,” Phys. Part. Nucl. 35, 193–224 (2004).Google Scholar
  2. 2.
    A. R. Edmonds, Angular Momentum in Quantum Mechanics (Princeton University Press, Princeton, 1957).MATHGoogle Scholar
  3. 3.
    D. A. Varshalovich, A. N. Moskalev, and V. K. Khersonskii, Quantum Theory of Angular Momentum (Nauka, Leningrad: 1975; World Scientific, Singapore, 1988).Google Scholar
  4. 4.
    E. S. Fedorov, Theodolite Method in Mineralogy and Petrography (Tipografiya A. Yakobsona, St. Petersburg, 1893) [in Russian].Google Scholar
  5. 5.
    L. I. Lukin, V. F. Chernyshev, and I. M. Kushnarev, Microstructural Analysis (Nauka, Moscow, 1965) [in Russian].Google Scholar
  6. 6.
    H.-J. Bunge, Mathematische Methoden der Texturanalyse (Akademie, Berlin, 1969).Google Scholar
  7. 7.
    G. Wassermann and J. Grewen, Texturen Metallischer Werkstoffe (Springer, Berlin, 1962; Metallurgiya, Moscow, 1969).Google Scholar
  8. 8.
    A. S. Viglin, “Quantitative measure of texture of polycrystalline material. Texture function,” Fiz. Tverd. Tela 2, 2463–2476 (1960).MathSciNetGoogle Scholar
  9. 9.
    R. J. Roe, “Description of crystallite orientation in polycrystalline materials. General solution to pole figure inversion,” J. Appl. Phys. 36, 2024–2031 (1965).ADSGoogle Scholar
  10. 10.
    H.-J. Bunge, “Zur Darstellung allgemeiner Texturen,” Z. Metallkund. 56, 872–874 (1965).Google Scholar
  11. 11.
    S. Matthies, “On the reproducibility of the orientation distribution function from pole figures (ghost phenomena),” Phys. Stat. Sol. (b) 92, K135–138 (1979).ADSGoogle Scholar
  12. 12.
    H.-J. Bunge, Texture Analysis in Materials Science (Butterworth, London, 1983).Google Scholar
  13. 13.
    S. Matthies, G. Vinel, and K. Helming, Standard Distributions in Texture Analysis (Akademie, Berlin, 1987).Google Scholar
  14. 14.
    T. I. Savjolova, “Calculation of domains of dependence for pole figures with an ultrahyperbolic equation,” Textures and Microstructures 23, 185–199 (1995).Google Scholar
  15. 15.
    T. I. Savelova, “On solution of an inverse diffraction problem,” Dokl. Akad. Nauk SSSR 266, 590–593 (1982).MathSciNetGoogle Scholar
  16. 16.
    S. Matthies and C. Esling, “Comments to a publication of Savyolova T.I. concerning domains of dependence in pole figures,” Textures and Microstructures 30, 201–227 (1998).Google Scholar
  17. 17.
    A. Vadon, D. Ruer, and R. Baro, “The generalization and refinement of the vector method for the texture analysis of polycrystalline materials,” Adv. X-Ray Analysis 23, 349–360 (1980).Google Scholar
  18. 18.
    R. D. Williams, “Analytical methods for representing complex textures by biaxial pole figures,” J. Appl. Crystallogr. 40, 4329–4335 (1968).Google Scholar
  19. 19.
    J. Imhof, “An iteration procedure in the texture analysis,” Phys. Stat. Sol. (b) 119, 693–701 (1983).ADSGoogle Scholar
  20. 20.
    S. Matthies and G. Vinel, “On the reproduction of the ODF of textured samples from reduced pole figures using the concept of conditional ghost correction,” Phys. Stat. Sol. (b) 112, K111–K120 (1982).ADSGoogle Scholar
  21. 21.
    S. Matthies, “20 years WIMV, history, experience and contemporary developments,” Mater. Sci. Forum 408412, 95–100 (2002).Google Scholar
  22. 22.
    S. Matthies, “Some remarks on theoretical developments in quantitative texture analysis and on the optimal calculation of harmonic quantities with high precision,” Textures and Microstructures 89, 115–129 (1988).Google Scholar
  23. 23.
    J. Pospiech, private communication, 1977.Google Scholar
  24. 24.
    S. Matthies and J. Pospiech, “On the demonstration of the ghost effect in texture analysis,” Phys. Stat. Sol. (b) 97, 547–556 (1980).ADSGoogle Scholar
  25. 25.
    S. Matthies, “On the reproducibility of the ODF of texture samples from pole figures. Part III: Relationship between the ODF and the reduced ODF f(g),” Kristall und Technik 15, 431–444 (1980).Google Scholar
  26. 26.
    M. Dahms and H.-J. Bunge, “Positivity method for the determination of complete ODFs,” Textures and Microstructures 10, 21–35 (1988).Google Scholar
  27. 27.
    P. Van Houtte, “The use of a quadratic form for the determination of non-negative texture functions,” Textures and Microstructures 6, 1–20 (1983).Google Scholar
  28. 28.
    P. Van Houtte, “A method for the generation of various ghost correction algorithms the example of the positivity method and the exponential method,” Textures and Microstructures 13, 199–212 (1991).Google Scholar
  29. 29.
    S. Matthies, “On the principle of conditional ghost correction and its realization in existing correction concepts,” Textures and Microstructures 1418, 1–12 (1991).Google Scholar
  30. 30.
    H. Schaeben, “Entropy optimization in texture geometry. I. Methodology,” Phys. Stat. Sol. (b) 148, 63–72 (1988).ADSGoogle Scholar
  31. 31.
    K. Pawlik, J. Pospiech, and K. Luecke, “The ODF approximation from pole figures with the aid of the ADC Method,” Textures and Microstructures 1418, 105 (1991).Google Scholar
  32. 32.
    K. Helming and T. Eschner, “A new approach to texture analysis of multiphase materials using a texture component model,” Cryst. Res. Technol. 25, K203–K208 (1990).Google Scholar
  33. 33.
    M. Dahms, “Introduction of the phon-concept into pole figure inversion using the iterative series expansion method,” Textures and Microstructures 19, 169–174 (1992).Google Scholar
  34. 34.
    M. Dahms, “Final positivity correction in the harmonic method,” Textures and Microstructures 21, 61–69 (1993).Google Scholar
  35. 35.
    R. Hielscher, H. Schaeben, and D. Chateigner, “On the entropy to texture index relationships in quantitative texture analysis,” J. Appl. Crystallogr. 40, 371–375 (2007).Google Scholar
  36. 36.
    M. Junk, J. Budday, and T. Boehlke, “On the solvability of maximum entropy moment problems in texture analysis,” Math. Models Methods Appl. Sci. 22, 1250043 (2012).MathSciNetGoogle Scholar
  37. 37.
    U. F. Kocks, C. N. Tomé, H. -R. Wenk, A. J. Beaudoin, and H. Mecking Texture and Anisotropy: Preferred Orientations in Polycrystals and Their Effect on Materials Properties (Cambridge University Press, Cambridge, 2000).Google Scholar
  38. 38.
    S. Matthies, K. Helming, and K. Kunze, “On the representation of orientation distributions in texture analysis by σ-sections,” Phys. Stat. Sol. (b) 157, 71–83 (1990); Phys. Stat. Sol. (b) 157, 489–507 (1990).ADSGoogle Scholar
  39. 39.
    P. Neumann, “Representation of orientations of symmetrical objects by Rodrigues vectors,” Textures and Microstructures 1418, 53–58 (1991).Google Scholar
  40. 40.
    J. J. Fundenberger, H. Schaeben, and K. G. Boogaart, “Visualization of patterns of preferred crystallographic orientation by ω-sections,” Mater. Sci. Forum 495497, 289–294 (2005).Google Scholar
  41. 41.
    S. Matthies, “Standard functions in the texture analysis,” Phys. Stat. Sol. (b) 101(2), K111–K115 (1980).ADSGoogle Scholar
  42. 42.
    R. H. Fisher, “Dispersion on a sphere,” Proc. R. Soc. London, Ser. A 217, 295–305 (1953).ADSMATHGoogle Scholar
  43. 43.
    T. Eschner, “Texture analysis by means of model functions,” Textures and Microstructures 21, 130–146 (1993).Google Scholar
  44. 44.
    S. Matthies, “Form effects in the description of the ODF of texturized materials by model components,” Phys. Stat. Sol. (b) 112(2), 705–716 (1982).ADSGoogle Scholar
  45. 45.
    T. M. Ivanova and D. I. Nikolaev, “New standard function for quantitative texture analysis,” Phys. Stat. Sol. (b) 228, 825–836 (2001).ADSGoogle Scholar
  46. 46.
    H. Schaeben, “A simple standard orientation density function: The hyperspherical de la Vallée Pousin kernel,” Phys. Stat. Sol. (b) 200, 367–376 (1997).ADSGoogle Scholar
  47. 47.
    S. Matthies, K. Helming, T. Steinkopf, and K. Kunze, “Standard distributions for the case of fibre textures,” Phys. Stat. Sol. (b) 150, 262–277 (1988).Google Scholar
  48. 48.
    K. Kunze and H. Schaeben, “The Bingham distribution of quaternions and its spherical Radon transform in texture analysis,” Math. Geol. 36, 917–943 (2004).MathSciNetGoogle Scholar
  49. 49.
    T. I. Savelova, “Preface,” in Novye metody issledovaniya tekstury polikristallicheskikh materialov (New Methods of Investigation of Texture of Polycrystalline Materials (Collection of articles from Textures and Microstructures journal)), Composed by I. I. Papirov (Metallurgiya, Moscow, 1985).Google Scholar
  50. 50.
    S. Matthies, M. Muller, and G. W. Vinel, “On the normal distribution in the orientation space,” Textures and Microstructures 10, 77–96 (1988).Google Scholar
  51. 51.
    D. J. Nikolaev and T. I. Savyolova, “Normal distribution on the rotation group SO(3),” Textures and Microstructures 29, 201–233 (1997).Google Scholar
  52. 52.
    H. -R. Wenk, S. Matthies, J. Donovan, and D. Chateigner, “BEARTEX: A Windows based program for quantitative texture analysis,” J. Appl. Crystallogr. 31, 262–269 (1998).Google Scholar
  53. 53.
    K. Pawlik and P. Ozga, LaboTex: The Texture Analysis Software, Göttinger Arbeiten zur Geologie und Palaeöntologie, SB4, 1999; http://www.labosoft.com.pl.Google Scholar
  54. 54.
    R. Hielscher and H. Schaeben, “A novel pole figure inversion method: Specification of the MTEX algorithm,” J. Appl. Crystallogr. 41, 1024–1037 (2008).Google Scholar
  55. 55.
    O. Engler and V. Randle, Texture Analysis: Macrotexture, Microtexture & Orientation Mapping (CRC Press, Boca Raton, 2010).Google Scholar
  56. 56.
    S. Matthies and F. Wagner, “On a 1/n law in texture related single orientation analysis,” Phys. Stat. Sol. (b) 196, K11–K15 (1996).ADSGoogle Scholar
  57. 57.
    S. Matthies and F. Wagner, “Using sets of individual orientations for ODF determination,” in Proceedings of ICOTOM 12 (NRC Research Press, Montreal, 1999), pp. 40–45.Google Scholar
  58. 58.
    J. Pospiech, J. Jura, and G. Gottstein, “Statistical analysis of single grain orientation data generated from model textures,” in Proceedings of ICOTOM 10 (Trans. Tech. Publications, Clausthal, Germany, 1993), pp. 407–412.Google Scholar
  59. 59.
    S. Matthies and G. W. Vinel, “On some methodical developments concerning calculations performed directly in the orientation space,” in Proceedings of ICOTOM 10 (Trans. Tech. Publications, Clausthal, Germany, 1993), pp. 1641–1646.Google Scholar
  60. 60.
    K. G. Boogaart, “Statistics for Individual Crystallographic Orientation Measurements,” PhD Thesis, TU Freiberg (Shaker-Verlag, Aachen, 2001).Google Scholar
  61. 61.
    F. Bachmann, R. Hielscher, and H. Schaeben, “Texture analysis with MTEX-free and open source software toolbox,” Solid State Phenom. 160, 63–68 (2010).Google Scholar
  62. 62.
    S. Matthies, “The ODF-spectrum a new and comprehensive characterization of the degree of anisotropy of orientation distributions,” Mater. Sci. Forum 495–497, 331–336 (2005).Google Scholar
  63. 63.
    H. Schaeben, R. Hielscher, J. J. Fundenberger, D. Potts, and J. Prestin, “Orientation density function-controlled pole probability density function measurements: Automatic adapted control of texture goniometers,” J. Appl. Crystallogr. 40, 570–579 (2007).Google Scholar
  64. 64.
    A. Muecklich and P. Klimanek, “Experimental errors in quantitative texture analysis from pole figures,” Mater. Sci. Forum 157162, 257–286 (1994).Google Scholar
  65. 65.
    V. V. Luzin and D. I. Nikolaev, “On the errors of experimental pole figures,” Textures and Microtextures 25, 121–128 (1996).Google Scholar
  66. 66.
    T. A. Lychagina and D. I. Nikolaev, “Investigation of experimental pole figure errors by simulation of individual spectra,” Crystallogr. Reports 52(5), 774–780 (2007).ADSGoogle Scholar
  67. 67.
    F. Bachmann, H. Schaeben, and R. Hielscher, “Optimizing the experimental design of texture goniometry,” J. Appl. Crystallogr. 45, 1173–1181 (2012).Google Scholar
  68. 68.
    L. Lutterotti, S. Matthies, and H. -R. Wenk, “MAUD: A friendly JAVA Program for material analysis using diffraction,” IUCr Newsletter of the CPD 21, 14–15 (1999).Google Scholar
  69. 69.
    Texture Analysis and Modeling Package (Material Science and Technology Division. LANL, Los Alamos, USA, 1995). e-mail: popLA@lanl.gov.Google Scholar
  70. 70.
    K. Helming, “Texture approximation by model components,” Material Structures 5(1), 3–9 (1998).Google Scholar
  71. 71.
    M. D. Vaudin, Ceramic Division. NIST. Gaithersburg. USA, 1999. e-mail: mark.vaudin@nist.gov.Google Scholar
  72. 72.
    D. Chateigner, Combined Analysis (ISTE-Wiley, London, 2010).Google Scholar
  73. 73.
    I. Salzmann and R. Resel, “STEREOPOLE: a software for the analysis of X-Ray diffraction pole figures with IDL,” J. Appl. Crystallogr. 37, 1029–1033 (2004).Google Scholar
  74. 74.
    TexTools. University of Montreal, Canada, 2005; http://www.resmat.com.
  75. 75.
    A. Tewari, S. Suwas, D. Srivastava, I. Samajdar, and A. Haldar, Eds., Proceedings of ICOTOM 16 (Trans. Tech. Publications. Mumbai, India, 2012).Google Scholar
  76. 76.
    H. -J. Bunge, Ed., Theoretical Methods of Texture Analysis (DGM, Oberursel, Germany, 1987).Google Scholar
  77. 77.
    H. -J. Bunge and C. Esling, Eds., Advances and Applications of Quantitative Texture Analysis (DGM, Oberursel, Germany, 1991).Google Scholar
  78. 78.
    New Methods of Investigation of Texture of Polycrystalline Materials (Collection of articles from Textures and Microstructures journal), Composed by I.I. Papirov (Metallurgiya, Moscow, 1985).Google Scholar
  79. 79.
    Ya. D. Vishnyakov, A. A. Babareku, S. A. Vladimirov, and I. V. Egiz, Theory of Texture Formation in Metals and Alloys (Nauka, Moscow, 1979) [in Russian].Google Scholar
  80. 80.
    S. A. Berestova and Sh. M. Khananov, “On some ways of formation of structural-phenomenological theories in mechanics of a deformable solid,” Vestnik PGTU. Mekhanika, No. 4, 17–29 (2010).Google Scholar
  81. 81.
    W. Voigt, Lehrbuch der Kristallphysik (Teubner, Leipzig, 1928).MATHGoogle Scholar
  82. 82.
    A. Reuss, Berechnung der Flieβsgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle Z. Angew. Math. Mech. 9, 49–58 (1929).MATHGoogle Scholar
  83. 83.
    S. Matthies and M. Humbert, “On the principle of a geometric mean of even-rank symmetric tensors for textured polycrystals,” J. Appl. Crystallogr. 28(3), 254–266 (1995).Google Scholar
  84. 84.
    S. Matthies, “GEO-MIX-SELF calculations of the elastic properties of a textured graphite sample at different hydrostatic pressures,” J. Appl. Crystallogr. 45, 1–16 (2012).Google Scholar
  85. 85.
    K. S. Aleksandrov and L. A. Aizenberg, “A method for determining physical constants of polycrystal materials,” Dokl. Akad. Nauk SSSR 167, 1028–1031 (1966).Google Scholar
  86. 86.
    A. Moraviec, “Calculation of polycrystal elastic constants from single-crystal data,” Phys. Stat. Sol. (b) 154, 535–540 (1989).ADSGoogle Scholar
  87. 87.
    R. Hill, “The elastic behaviour of a crystalline aggregate,” Proc. Phys. Soc. 65, 349–354 (1952).ADSGoogle Scholar
  88. 88.
    S. Matthies, “On the combination of self-consistent and geometric mean elements for the calculation of the elastic properties of textured multi-phase samples,” Solid State Phenom. 160, 87–93 (2010).Google Scholar
  89. 89.
    Z. Hashin and S. Shtrikman, “Note on a variational approach to the theory of composite elastic materials,” J. Franklin Inst. 271(4), 336–41 (1961).Google Scholar
  90. 90.
    I. Fredholm, “Sur les équations de l’équilibre d’un corps élastique,” Acta Math. 23, 1–42 (1898).MathSciNetGoogle Scholar
  91. 91.
    J. D. Eshelby, “The determination of the elastic field of an ellipsoidal inclusion and related problems,” Proc. R. Soc. A 241(1226), 376–396 (1957).ADSMATHMathSciNetGoogle Scholar
  92. 92.
    T. Mura, Micromechanics of Defects in Solids (Kluwer Academic Publishers, Dordrecht, 1991).Google Scholar
  93. 93.
    A. Einstein, “Eine neue Bestimmung der Moleküldimensionen,” Ann. Phys. (New York) 19, 289–306 (1906); Ann. Phys. (New York) 34, 591–592 (1911).ADSMATHGoogle Scholar
  94. 94.
    E. Kröner, “Berechnung der Elastischen Konstanten des Vielkristalls aus den Konstanten des Einkristalls,” Z. Phys. 151(4), 504–518 (1958).ADSGoogle Scholar
  95. 95.
    A. Moraviec, “The effective elastic constants of quasiisotropic polycrystalline materials composed of cubic phases,” Phys. Stat. Sol. A 155, 353–364 (1996).ADSGoogle Scholar
  96. 96.
    S. Matthies and G. W. Vinel, “On the calculation of the Eshelby tensor and the beauty of our nature,” Solid State Phenom 105, 113–118 (2005).Google Scholar
  97. 97.
    T. D. Shermergor, Theory of Elasticity of Microinhomogeneous Media (Nauka, Moscow, 1977) [in Russian].Google Scholar
  98. 98.
    I. O. Bayuk and E. M. Chesnokov, “Correlations between elastic and transport properties of porous cracked anisotropic media,” Phys. Chem. Earth 23(3), 361–366 (1998).Google Scholar
  99. 99.
    H.-R. Wenk, R. N. Vasin, H. Kern, S. Matthies, S. C. Vogel, and T. I. Ivankina, “Revisiting elastic anisotropy of biotite gneiss from the Outokumpu scientific drill hole based on new texture measurements and texture-based velocity calculations,” Tectonophysics 570571, 123–134 (2012).Google Scholar
  100. 100.
    G. Simmons and H. Wang, Single Crystal Elastic Constants and Calculated Aggregate Properties: A Handbook (M.I.T. Press, Cambridge, Massachusetts, 1971).Google Scholar
  101. 101.
    S. Matthies, H. G. Priesmeyer, and M. R. Daymond, “On the diffractive determination of single crystal elastic constants using polycrystalline samples,” J. Appl. Crystallogr. 34(5), 585–601 (2001).Google Scholar
  102. 102.
    I. O. Bayuk, M. Ammerman, and E. M. Chesnokov, “Elastic moduli of anisotropic clay,” Geophysics 72(5), D107–D117 (2007).ADSGoogle Scholar
  103. 103.
    M. Wang and N. Pan, “Elastic property of multiphase composites with random microstructures,” J. Comp. Phys. 228, 5978–5988 (2009).ADSMATHGoogle Scholar
  104. 104.
    M. A. Mazo, L. I. Manevitch, E. B. Gusarova, M. Yu. Shamaev, A. A. Berlin, N. K. Balabaev, and G. C. Rutledge, “Molecular dynamics simulation of thermomechanical properties of montmorillonite crystal. 3. Montmorillonite crystals with PEO oligomer intercalates,” J. Phys. Chem. B 112, 3597–3604 (2008).Google Scholar
  105. 105.
    B. Drach, I. Tsukrov, T. Gross, S. Dietrich, K. Weidenmann, R. Piat, and T. Boehlke, “Numerical modeling of carbon/carbon composites with nanotextured matrix and 3D pores of irregular shapes,” Intern. J. Solids Struct. 48, 2447–2457 (2011).Google Scholar
  106. 106.
    A. P. Roberts and E. J. Garboczi, “Elastic properties of model porous ceramics,” J. Amer. Ceram. Soc. 83, 3041–3048 (2000).Google Scholar
  107. 107.
    Y. J. Cho, V. J. Lee, S. K. Park, and Y. H. Park, “Effect of pore morphology on deformation behaviours in porous Al by FEM,” AEM 15, 166–169 (2013).MathSciNetGoogle Scholar
  108. 108.
    I. C. Noyan and B. C. Jerome, Residual Stress: Measurement by Diffraction and Interpretation (Springer, New York, 1987).Google Scholar
  109. 109.
    A. S. Waghchaure, Residual Stress Analysis by Diffraction using High-Energy Synchrotron Radiation (Michigan Tech University, Houghton, 2010).Google Scholar
  110. 110.
    V. Hauk, Structural and Residual Stress Analysis by Nondestructive Methods (Elsevier, Amsterdam, 1997).MATHGoogle Scholar
  111. 111.
    S. Matthies, “Moment pole figures in residual stress analysis,” Textures and Microstructures 25, 229–236 (1996).Google Scholar
  112. 112.
    C. M. Brakman, “Residual stresses in cubic materials with orthorhombic or monoclinic specimen symmetry: Influence of texture on ψ splitting and non-linear behavior,,” J. Appl. Crystallogr. 16, 325–340 (1986).Google Scholar
  113. 113.
    C. Schuman, V. Humbert, and C. Esling, “Determination of the residual stresses in a low carbon steel sheet using ODF,” Z. Metallkd. 85, 559–563 (1994).Google Scholar
  114. 114.
    P. Van Houtte and L. De Buyser, “The influence of crystallographic texture on diffraction measurements of residual stress,” Acta Metall. Mater. 41, 323–336 (1993).Google Scholar
  115. 115.
    N. C. Popa and D. Balzar, “Elastic strain and stress determination by Rietveld refinement: generalized treatment for textured polycrystals for all Laue classes,” J. Appl. Crystallogr. 34, 187–195 (2001).Google Scholar
  116. 116.
    H. M. Rietveld, “A profile refinement method for nuclear and magnetic structures,” J. Appl. Crystallogr. 2(2), 65 (1969).Google Scholar
  117. 117.
    S. Matthies, S. Merkel, H. R. Wenk, R. S. Hemley, and H. K. Mao, “Effect of texture on the determination of elasticity of polycrystalline ɛ-Iron from diffraction measurements,” Earth Planet. Sci. Lett. 194(1), 201–212 (2001).ADSGoogle Scholar
  118. 118.
    B. Sander, “Zur Petrographisch-tektonischen Analyse,” Jahrb. Geol. Bundes Anstalt. A 23, 215–222 (1923).Google Scholar
  119. 119.
    H. -R. Wenk, H. Kern, W. Schaefer, and G. Will, “Comparison of neutron and X-Ray diffraction in texture analysis of deformed carbonate rocks,” J. Struct. Geol. 6, 687–692 (1984).ADSGoogle Scholar
  120. 120.
    K. Ullemeyer, G. Braun, M. Dahms, J. H. Kruhl, N. Ø. Olesen, and S. Siegesmund, “Texture analysis of a muscovite-bearing quartzite: a comparison of some currently used techniques,” J. Struct. Geol. 22, 1541–1557 (2000).ADSGoogle Scholar
  121. 121.
    K. Ullemeyer, P. Spalthoff, J. Heinitz, N. N. Isakov, A. N. Nikitin, and K. Weber, “The SKAT texture diffractometer at the pulsed reactor IBR-2 at Dubna: Experimental layout and first measurements,” Nucl. Instrum. Meth. Phys. Res. A412 80–88 (1998).ADSGoogle Scholar
  122. 122.
    K. Walther, A. Frischbutter, C. Scheffzuek, M. Korobshenko, F. Levchanovski, A. Kirillov, N. Astachova, and S. Mureshkevich, “Epsilon-MDS-a neutron time-of-flight diffractometer for strain measurements,” Solid State Phenom. 105, 67–70 (2005).Google Scholar
  123. 123.
    H.-R. Wenk, L. Lutterotti, and S. Vogel, “Texture analysis with the new HIPPO TOF diffractometer,” Nucl. Instrum. Meth. Phys. Res. A515, 575–588 (2003).ADSGoogle Scholar
  124. 124.
    A. Frischbutter, Ch. Janssen, Ch. Scheffzük, K. Walther, K. Ullemeyer, J. H. Behrmann, A. N. Nikitin, T. I. Ivankina, H. Kern, and B. Leiss, “Strain and texture measurements on geological samples using neutron diffraction at IBR-2, Joint Institute for Nuclear Research Dubna (Russia),” Phys. Part. Nucl. 37(Suppl. 7), S91–S128 (2007).Google Scholar
  125. 125.
    J. C. C. Mercier, “Olivine and pyroxenes,” in Preferred Orientation in Deformed Metals and Rocks: An Introduction to Modern Texture Analysis (Academic Press, Orlando. 407–430 (1985).Google Scholar
  126. 126.
    W. Skrotzki, A. Wedel, K. Weber, and W. F. Muller, “Microstructure and texture in lherzolites of the Balmuccia massif and their significance regarding the thermomechanical history,” Tectonophysics 179, 227–251 (1990).ADSGoogle Scholar
  127. 127.
    S. Zhang and S. -Y. Karato, “Lattice preferred orientation of olivine aggregates deformed in simple shear,” Nature 375, 774–777 (1995).ADSGoogle Scholar
  128. 128.
    D. Mainprice, “Seismic anisotropy of the deep Earth,” Treatise on Geophysics 2, 437–491 (2007).Google Scholar
  129. 129.
    A. Nicolas and N. I. Christensen, “Formation of anisotropy in upper mantle peridotites: A review,” in Composition, Structure and Dynamics of the Lithosphere-Asthenosphere System, Geodyn. Ser. 16, 111–123 (1987).Google Scholar
  130. 130.
    D. Mainprice, G. Barruol, and W. Ben Ismail, “The seismic anisotropy of the Earth’s mantle: From single crystal to polycrystal,” in Earth’s Deep Interior: Mineral Physics and Tomography from the Atomic to the Global Scale, Geophys. Monograph Ser, 117, 237–264 (2000).Google Scholar
  131. 131.
    L. Peselnick, J. P. Lockwood, and R. Stewart, “Anisotropic elastic velocities of some upper mantle xenoliths underlying the Sierra Nevada batholiths,” J. Geophys. Res. 82, 2005–2010 (1977).ADSGoogle Scholar
  132. 132.
    D. Mainprice and P. G. Silver, “Interpretation of SKS-waves using samples from the subcontinental lithosphere,” Phys. Earth Planet. Inter. 78, 257 (1993).ADSGoogle Scholar
  133. 133.
    S. Ji, X. Zhao, and D. Francis, “Calibration of shearwave splitting in the subcontinental upper mantle beneath active orogenic belts using ultramafic xenoliths from the Canadian Cordillera and Alaska,” Tectonophysics 239, 1–27 (1994).ADSGoogle Scholar
  134. 134.
    B. Soedjatmiko and N. I. Christensen, “Seismic anisotropy under extended crust: evidence from upper mantle xenoliths, Cima Volcanic Field, California,” Tectonophysics 321, 279–296 (2000).ADSGoogle Scholar
  135. 135.
    W. Ben Ismail and D. Mainprice, “An olivine fabric database: An overview of upper mantle fabrics and seismic anisotropy,” Tectonophysics 296, 145–157 (1998).ADSGoogle Scholar
  136. 136.
    O. Engler, J. Jura, and S. Matthies, “Influence of number and arrangement of single orientation measurements on their statistical relevance,” in Proceedings of ICOTOM 12 (NRC Research Press, Montreal, 1999), pp. 68–73Google Scholar
  137. 137.
    T. Lokajicek, Z. Pros, K. Klima, A. N. Nikitin, and T. I. Ivankina, “Neutron diffraction and ultrasonic sounding: A tool for solid body investigation,” in Nondestructive Characterization of Material VIII (Plenum Press, New York, 1998) 529–533.Google Scholar
  138. 138.
    T. I. Ivankina, K. Klima, T. Lokajicek, A. N. Nikitin, and Z. Pros, “Study of anisotropy in an olivine xenolith using acoustic waves and neutron diffraction,” Izv., Phys. Solid Earth 35(5), 372–381 (1999).Google Scholar
  139. 139.
    A. N. Nikitin, T. I. Ivankina, D. E. Burilichev, K. Klima, T. Lokajicek, and Z. Pros, “Anisotropy and texture of olivine-bearing mantle rocks at high pressures,” Izv., Phys. Solid Earth 37(1), 59–72 (2001).Google Scholar
  140. 140.
    Z. Pros, “Investigation of anisotropy of elastic properties of rocks on spherical samples at high hydrostatic pressures,” in High Pressure and Temperature Studies of Physical Properties of Rocks and Minerals (Naukova Dumka, Kiev, 1977).Google Scholar
  141. 141.
    D. T. Griggs and J. D. Blacic, “The strength of quartz in the ductile regime,” Trans. Amer. Geophys. Union 45(1), 102–103 (1964).Google Scholar
  142. 142.
    H. G. Ave Lallemant and N. L. Carter, “Pressure dependence of quartz deformation lamellae orientations,” Amer. J. Sci. 270, 218–235 (1971).Google Scholar
  143. 143.
    J. Hofmann, “Das Quarzteilgefuge von Metamorphiten und Anatexiten, Dargestellt am Beispiel des Osterzgebirges (DDR),” Freiberger Forschungshefte C 297 107 (1974).Google Scholar
  144. 144.
    V. N. Kozhevnikov, Conditions for Formation of Structural-Metamorphic Parageneses in Precambrian Complexes (Nauka, Leningrad, 1982) [in Russian].Google Scholar
  145. 145.
    A. N. Kazakov, Dynamical Analysis of Microstructural Orientations of Minerals (Nauka, Leningrad, 1987) [in Russian].Google Scholar
  146. 146.
    A. N. Nikitin, E. I. Rusakova, and T. T. Ivankina, “To theory of formation of piezoelectric textures in rocks,” Izv. Akad. Nauk SSSR, Fiz. Zem., No. 6, 49 (1989).Google Scholar
  147. 147.
    H. -R. Wenk and J. Pannetier, “Texture development in deformed granodiorites from the Santa Rosa mylonite zone, Southern California,” J. Struct. Geol. 12, 177–184 (1990).ADSGoogle Scholar
  148. 148.
    A. N. Nikitin and T. I. Ivankina, “On the possible mechanisms of the formation of piezoelectric active rocks with crystallographic textures,” Textures and Microstructures 25, 33–43 (1995).Google Scholar
  149. 149.
    A. N. Nikitin, T. I. Ivankina, K. Ullemeyier, and R. N. Vasin, “Similar quartz crystallographic textures in rocks of continental Earth’s crust (by neutron diffraction data): I. Quartz textures in monomineral rocks,” Crystallogr. Reports 53(5), 812–818 (2008).ADSGoogle Scholar
  150. 150.
    A. N. Nikitin, T. I. Ivankina, K. Ullemeyier, and R. N. Vasin, “Similar quartz crystallographic textures in rocks of continental Earth’s crust (by neutron diffraction data): II. Quartz textures in monophase rocks,” Crystallogr. Reports 53(5), 819–827 (2008).ADSGoogle Scholar
  151. 151.
    A. N. Nikitin, T. I. Ivankina, K. Ullemeyier, and R. N. Vasin, “Similar quartz crystallographic textures in rocks of continental earth’s crust (by neutron diffraction data): III. Relation of quartz texture types with means and conditions of texture formation,” Crystallogr. Reports 53(5), 828–836 (2008).ADSGoogle Scholar
  152. 152.
    W. Schäfer, “Neutron diffraction applied to geological texture and stress analysis,” Eur. J. Mineral. 14, 263–289 (2002).Google Scholar
  153. 153.
    H.-R. Wenk, Preferred Orientation in Deformed Metals and Rocks: An Introduction to Modern Texture Analysis (Academic Press, Orlando, 1985).Google Scholar
  154. 154.
    H. -R. Wenk, “Neutron scattering in Earth sciences. Reviews in mineralogy and geochemistry,” Mineral. Soc. America 63, 620 (2006).Google Scholar
  155. 155.
    V. A. Kalinin, M. V. Rodkin, and I. S. Tomashevskaya, Geodynamic Effects of Physicochemical Transformations in a Solid Medium (Nauka, Moscow, 1989) [in Russian].Google Scholar
  156. 156.
    T. I. Ivankina, A. N. Nikitin, T. Lokajicek, Z. Pros, K. Klima, and K. Ullemeyer, “Textures and elastic anisotropies of amphibolites from the Kola borehole,” in Proceedings of the ICOTOM 12 (NRC Research Press, Montreal, 1999), Vol. 2, 1587–1592.Google Scholar
  157. 157.
    A. N. Nikitin, T. I. Ivankina, K. Ullemeyer, T. Lokajicek, Z. Pros, K. Klima, Yu. P. Smirnov, and Yu. I. Kusnetzov, “Texture-controlled elastic anisotropy of amphibolites from the Kola Superdeep Borehole SG-3 at high pressure,” Izv., Phys. Solid Earth 37(1), 37–45 (2001).Google Scholar
  158. 158.
    K. V. Lobanov, V. I. Kazansky, A. V. Kuznetsov, A. V. Zharikov, A. N. Nikitin, T. I. Ivankina, and N. V. Zamyatina, “Correlation of Archean rocks from the Kola Superdeep Borehole and their analogues from the surface: Evidence from structural-petrological, petrophysical, and neutron diffraction data,” Petrology 10(1), 23–38 (2002).Google Scholar
  159. 159.
    T. I. Ivankina, A. N. Nikitin, N. V. Zamyatina, V. I. Kazanskii, K. V. Lobanov, and A. V. Zharikov, “Neutron diffraction texture analysis of anisotropy in Archean amphibolites and gneisses from the Kola super-deep borehole,” Izv., Phys. Solid Earth 40(4), 334–346 (2004).Google Scholar
  160. 160.
    T. I. Ivankina, K. Klima, A. L. Kulakovskii, T. Lokajicek, Yu. A. Morozov, A. N. Nikitin, and Z. Pros, “Study of the structure of geospace of the Kola Superdeep Borehole using methods of ultrasonic, neutronography, and microstructural analysis of rocks,” in Sb. nauch. tr. Geofizicheskie issledovaniya IFZ RAN (Proc. of Geophysical Research of the Institute of Physics of the Earth, Russian Academy of Sciences) (IFZ RAN, Moscow, 2005), No. 1, 88–107 [in Russian].Google Scholar
  161. 161.
    T. I. Ivankina, H. M. Kern, and A. N. Nikitin, “Directional dependence of P- and S-wave propagation and polarization in foliated rocks from the Kola superdeep well: Evidence from laboratory measurements and calculations based on TOF neutron diffraction,” Tectonophysics 407, 25–42 (2005).ADSGoogle Scholar
  162. 162.
    K. Helming and T. Eschner, “A new approach to texture analysis of multiphase materials using a texture component model,” Cryst. Res. Technol. 25, K203–K208 (1990).Google Scholar
  163. 163.
    S. Siegesmund, “The significance of rock fabrics for the geological interpretation of geophysical anisotropics,” Geotektonische Forschungen 85, 1–123 (1996).Google Scholar
  164. 164.
    T. I. Ivankina, H. Kern, and A. N. Nikitin, “Neutron texture measurements and 3D velocity calculations on strongly foliated biotite gneisses from the Outokumpu Deep Drill Hole,” in Outokumpu Deep Drill Project, Second International Workshop. Report Q10.2/2007/29, Ed. by I.T. Kukkonen (Southern Finland Office, Marine Geology and Geophysics, Espoo, Finland, 2007), 47–50.Google Scholar
  165. 165.
    H. Kern, K. Mengel, K. W. Strauss, T. I. Ivankina, A. N. Nikitin, and I. T. Kukkonen, “Elastic wave velocities, chemistry and modal mineralogy of crustal rocks sampled by the Outokumpu scientific drill hole: Evidence from lab measurements and modeling,” Phys. Earth Planet. Inter. 175, 151–166 (2009).ADSGoogle Scholar
  166. 166.
    H. Kern, T. I. Ivankina, A. N. Nikitin, T. Lokajicek, and Z. Pros, “The Effect of oriented microcracks and crystallographic and shape preferred orientation on bulk elastic anisotropy of a strongly foliated biotite gneiss,” Tectonophysics 457(3–4), 143–149 (2008).ADSGoogle Scholar
  167. 167.
    G. I. Petrashen’, Wave Propagation in Anisotropic Elastic Media (Nauka, Leningrad, 1980) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.Frank Laboratory of Neutron PhysicsJoint Institute for Nuclear ResearchDubna, Moscow oblastRussia

Personalised recommendations