Advertisement

Physics of Particles and Nuclei

, Volume 46, Issue 3, pp 249–276 | Cite as

Correlation Fourier diffractometry: 20 Years of experience at the IBR-2 reactor

  • A. M. Balagurov
  • I. A. Bobrikov
  • G. D. Bokuchava
  • V. V. Zhuravlev
  • V. G. Simkin
Article

Abstract

The high-resolution Fourier diffractometer (HRFD) was commissioned at the IBR-2 pulsed reactor at FLNP JINR in 1994. The specific feature of the HRFD design is the use of fast Fourier chopper for modulating the primary neutron beam intensity and the correlation method of diffraction data acquisition. This allowed to reach with HRFD extremely high resolution (Δd/d ≈ 0.001) over a wide range of inter-planar spacings at a relatively short flight path between chopper and sample (L = 20 m). Over time, a lot of diffraction experiments on crystalline materials, the main goal of which was to study their atomic and magnetic structures, were performed at HRFD. Successful implementation of the Fourier diffractometry technique at the IBR-2 reactor stimulated the construction of yet another Fourier diffractometer intended for internal mechanical stress studies in bulk materials (FSD, Fourier Stress Diffractometer). In this paper the experience of using this technique at the IBR-2, which is a long-pulse neutron source, is considered, the examples of HRFD studies are given, and possible solutions for existing technical problems of using correlation diffractometry and ways of increasing the intensity and resolution of HRFD are discussed.

Keywords

Resolution Function Rietveld Method Pulse Neutron Source Correlation Background Neutron Diffractometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. W. Hewat, “Design for a conventional high resolution neutron powder diffractometer,” Nucl. Instrum. Methods 127, 361–370 (1975).CrossRefADSGoogle Scholar
  2. 2.
    A. W. Hewat, “D2B, a new high resolution neutron powder diffractometer at ILL Grenoble,” Mater. Sci. Forum 9, 69–79 (1986).CrossRefGoogle Scholar
  3. 3.
    P. Fischer, G. Frey, M. Koch, M. Koennecke, V. Pomjakushin, J. Schefer, R. Thut, N. Schlumpf, R. Buerge, U. Greuter, S. Bondt, and E. Berruyer, “High resolution powder diffractometer HRPT for thermal neutrons at SINQ,” Physica B (Amsterdam) 276278, 146–147 (2000).CrossRefGoogle Scholar
  4. 4.
    W. I. F. David, W. T. A. Harrison, and M. W. Johnson, “High resolution diffraction at ISIS,” Mater. Sci. Forum 9, 89–102 (1986).CrossRefGoogle Scholar
  5. 5.
  6. 6.
  7. 7.
    M. Russina, F. Mezei, and G. Kali, “First implementation of novel multiplexing techniques for advanced instruments at pulsed neutron sources,” J. Phys.: Conf. Ser. 340, 012018 (2012).ADSGoogle Scholar
  8. 8.
    K. Sköld, “A mechanical correlation chopper for thermal neutron spectroscopy,” Nucl. Instrum. Methods 63, 114–116 (1968).CrossRefADSGoogle Scholar
  9. 9.
    A. M. Balagurov, “High resolution Fourier diffraction at the IBR-2 Reactor,” Neutron News 16, 8–12 (2005).CrossRefGoogle Scholar
  10. 10.
    V. Glezer, “Correlation methods in time-of-flight neutron spectroscopy,” Fiz. Elem. Chastits At. Yadra 4, 1125–1142 (1972).Google Scholar
  11. 11.
    R. Heinonen, P. Hiismäki, A. Piirto, H. Pöyry, and A. Tiitta, “A time-focusing Fourier chopper TOF diffractometer for large scattering angles,” in Proceedings of the Neutron Diffraction Conference, Petten, 1975, RCN-234, pp.347–359.Google Scholar
  12. 12.
    J. F. Colwel, P. H. Miller, and W. L. Wittemore, “A new high-efficiency time-of-flight system,” in Neutron Inelastic Scattering. Conf. Proc. (IAEA, Vienna, 1968), p. 429.Google Scholar
  13. 13.
    J. F. Colwel, S. R. Lehinan, P. H. Miller, and W. L. Wittemore, “Fourier analysis of thermal neutron time-of-flight data: A high efficiency neutron chopping system,” Nucl. Instrum. Methods 76, 135–149 (1969).CrossRefADSGoogle Scholar
  14. 14.
    A. C. Nunes, R. Nathans, and B. P. Schoenborn, “A neutron Fourier chopper for single crystal reflectivity measurements: Some general design considerations,” Acta Crystallogr. A, Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 27, 284–291 (1971).CrossRefADSGoogle Scholar
  15. 15.
    A. C. Nunes, “The neutron Fourier chopper in protein crystallography,” J. Appl. Crystallogr. 8, 20–28 (1975).CrossRefGoogle Scholar
  16. 16.
    P. Hiismäki, “Inverse time-of-flight method,” in Neutron Inelastic Scattering. Conf. Proc. (IAEA, Grenoble, 1972), p. 803.Google Scholar
  17. 17.
    H. Pöyry, P. Hiismäki, and A. Virjo, “Principles of reverse neutron time-of-flight spectrometry with Fourier chopper applications,” Nucl. Instrum. Methods 126, 421–433 (1975).CrossRefADSGoogle Scholar
  18. 18.
    R. Heinonen, P. Hiismäki, A. Piirto, H. Pöyry, and A. Tiitta, “A time focusing Fourier chopper time-of-flight diffractometer for large scattering angles,” in Proceedings of the Neutron Diffraction Conference, Petten, 1975, RCN-234, pp. 347–359.Google Scholar
  19. 19.
    P. Hiismäki, V. A. Trounov, O. Antson, V. A. Kudryashev, H. Kukkonen, H. Pöyry, A. F. Shchebetov, A. Tiitta, and V. A. Ulyanov, “Experience of the Fourier TOF neutron techniques for high resolution neutron diffractometry,” in Neutron Scattering in the Nineties. Conf. Proc. (IAEA, Vienna, 1985), pp. 453–459.Google Scholar
  20. 20.
    J. Schröder, V. A. Kudryashev, J. M. Keuter, H. G. Priesmeyer, J. Larsen, and A. Tiitta, “FSS—a novel RTOF-diffractometer optimized for residual stress investigations,” J. Neutron Res. 2, 129–141 (1994).CrossRefGoogle Scholar
  21. 21.
    V. A. Kudryashev, H. G. Priesmeyer, J. M. Keuter, J. Schröder, and R. Wagner, “On the shape of the diffraction peaks measured by Fourier reverse time-of-flight spectrometry,” Nucl. Instrum. Methods Phys. Res., B 101, 484–492 (1995).CrossRefADSGoogle Scholar
  22. 22.
    V. A. Kudryashev, H. G. Priesmeyer, J. M. Keuter, J. Schröder, and R. Wagner, “Phase errors and their influence on the RTOF-Fourier method,” Nucl. Instrum. Methods Phys. Res., B 103, 517–522 (1995).CrossRefADSGoogle Scholar
  23. 23.
    I. M. Frank and P. Pacher, “First experience on the high intensity pulsed reactor IBR-2,” Physica B+C (Amsterdam) 120, 37–44 (1983).CrossRefADSGoogle Scholar
  24. 24.
    P. Hiismäki, H. Pöyry, and A. Tiitta, “Exploitation of the Fourier chopper in neutron diffractometry at pulsed sources,” J. Appl. Crystallogr. 21, 349–354 (1988).CrossRefGoogle Scholar
  25. 25.
    V. L. Aksenov, A. M. Balagurov, V. G. Simkin, Yu. V. Taran, V. A. Trounov, V. A. Kudrjashev, A. P. Bulkin, V. G. Muratov, P. Hiismaki, A. Tiitta, and O. Antson, “The new Fourier diffractometer at the IBR-2 Reactor: Design and first results,” JINR Commun. E13-92-456 (Dubna, 1992).Google Scholar
  26. 26.
    A. M. Balagurov, “High precision structural refinement from high resolution Fourier neutron powder diffraction data,” Mater. Sci. Forum 166169, 261–266 (1994).CrossRefGoogle Scholar
  27. 27.
    A. M. Balagurov, P. Fischer, T. Yu. Kaganovich, E. Kaldis, J. Karpinski, V. G. Simkin, and V. A. Trounov, “Precision Fourier neutron diffraction study of the high-temperature superconductor Y(44Ca)Ba2Cu4O8,” JINR Commun. E14-94-415 (Dubna, 1994).Google Scholar
  28. 28.
    G. D. Bokuchava, A. V. Tamonov, N. R. Shamsutdinov, A. M. Balagurov, and D. M. Levin, “Reverse TOF neutron study of residual stresses in perforator’s striker,” J. Neutron Res. 9, 255–261 (2001).CrossRefGoogle Scholar
  29. 29.
    G. D. Bokuchava, V. L. Aksenov, A. M. Balagurov, E. S. Kuzmin, V. V. Zhuravlev, A. P. Bulkin, V. A. Kudryashev, and V. A. Trounov, “Neutron Fourier diffractometer FSD for internal stress analysis: First results,” Appl. Phys. A 74, S86–S88 (2002).CrossRefADSGoogle Scholar
  30. 30.
    P. G. Radaelli, S. Hull, H. J. Bleif, and A. M. Balagurov, “Powder diffraction instruments,” in Performance of a Suite of Generic Instruments on ESS, ESS 115-01-T (2001), pp.41–55.Google Scholar
  31. 31.
    V. L. Aksenov, A. M. Balagurov, V. G. Simkin, A. P. Bulkin, V. A. Kudrjashev, V. A. Trounov, O. Antson, P. Hiismaki, and A. Tiitta, “Performance of the high resolution Fourier diffractometer at the IBR-2 pulsed reactor,” J. Neutron Res. 5, 181–200 (1997).CrossRefGoogle Scholar
  32. 32.
    A. M. Balagurov and V. A. Kudrjashev, “Correlation Fourier diffractometry for long-pulse neutron sources: A new concept,” in 19th Meeting on Collaboration of Advanced Neutron Sources, ICANS XIX, Grindelwald, Switzerland, 2010.Google Scholar
  33. 33.
    V. A. Kudryashev, H. G. Priesmeyer, J. M. Keuter, J. Schriider, R. Wagner, and V. A. Trounov, “Optimization of detectors in time-focusing geometry for RTOF neutron diffractometers,” Nucl. Instrum. Methods Phys. Res., B 93, 355–361 (1994).CrossRefADSGoogle Scholar
  34. 34.
    V. A. Kudryashev, A. P. Bulkin, V. G. Muratov, V. A. Trounov, V. A. Ulyanov, O. Antson, H. Pöyry, A. Tiitta, P. Hiismäki, A. M. Balagurov, and E. V. Serochkin, “Detection system for high-resolution diffractometers of SFINKS type,” Soobshch. No.1562, LIYaF (Leningrad Inst. of Nuclear Physics, Leningrad, 1989) [in Russian].Google Scholar
  35. 35.
    E. J. Mittemeijer and U. Welzel, “The’ state of the art’ of the diffraction analysis of crystallite size and lattice strain,” Z. Kristallogr. 223, 552–560 (2008).CrossRefGoogle Scholar
  36. 36.
    V. L. Aksenov and A. M. Balagurov, “Time-of-flight neutron diffractometry,” Usp. Fiz. Nauk 166, 955–986 (1996).CrossRefGoogle Scholar
  37. 37.
    V. B. Zlokazov and V. V. Chernyshev, “MRIA-a program for a full profile analysis of powder multiphase neutron-diffraction time-of-flight (direct and Fourier) spectra,” J. Appl. Crystallogr. 25, 447 (1992).CrossRefGoogle Scholar
  38. 38.
    V. L. Aksenov, A. M. Balagurov, V. V. Sikolenko, V. G. Simkin, V. A. Aleshin, E. V. Antipov, A. A. Gippius, D. A. Mikhajlova, S. N. Putilin, and F. Bouree, “Precision neutron diffraction study of the high-T c superconductor HgBa2CuO4+δ,” Phys. Rev. B: Condens. Matter 55, 3966–3973 (1997).CrossRefADSGoogle Scholar
  39. 39.
    A. M. Abakumov, V. L. Aksenov, V. A. Alyoshin, E. V. Antipov, A. M. Balagurov, D. A. Mikhailova, S. N. Putilin, and M. G. Rozova, “Effect of fluorination on the structure and superconducting properties of the Hg-1201 phase,” Phys. Rev. Lett. 80, 385–388 (1998).CrossRefADSGoogle Scholar
  40. 40.
    K. A. Lokshin, D. A. Pavlov, S. N. Putilin, E. V. Antipov, D. V. Sheptyakov, and A. M. Balagurov, “Enhancement of T c in Hg-1223 by fluorination,” Phys. Rev. B: Condens. Matter 63, 064511 (2001).CrossRefADSGoogle Scholar
  41. 41.
    A. M. Balagurov, V. L. Aksenov, E. V. Antipov, S. N. Putilin, and D. V. Sheptyakov, “Neutron diffraction study of atomic structure of high-T c mercury-based superconductors as a function of anion composition and external pressure,” Fiz. Elem. Chastits At. Yadra 35, 1351–1467 (2004).Google Scholar
  42. 42.
    A. M. Balagurov, V. Yu. Pomjakushin, V. G. Simkin, and A. A. Zakharov, “Neutron diffraction study of phase separation in La2CuO4 + y single crystals,” Physica C (Amsterdam) 272, 277–284 (1996).CrossRefADSGoogle Scholar
  43. 43.
    V. Yu. Pomjakushin, A. A. Zakharov, A. M. Balagurov, F.N. Gygax, A. Schenck, A. Amato, D. Herlach, A. I. Beskrovnyi, V. N. Duginov, Yu. V. Obukhov, A. V. Pole, V. G. Simkin, A. N. Ponomarev, and S. N. Barilo, “Microscopic phase separation in La2CuO4 + y induced by the superconducting transition,” Phys. Rev. B: Condens. Matter 58, 12350–12354 (1998).CrossRefADSGoogle Scholar
  44. 44.
    N. A. Babushkina, L. M. Belova, O. Yu. Gorbenko, A. R. Kaul, A. A. Bosak, V. I. Ozhogin, and K. I. Kugel, Nature (London) 391, 159–161 (1998).CrossRefADSGoogle Scholar
  45. 45.
    V. L. Aksenov, A. M. Balagurov, and V. Yu. Pomyakushin, “Neutron diffraction analysis of doped manganites,” Usp. Fiz. Nauk 173, 883–887 (2003).CrossRefGoogle Scholar
  46. 46.
    A. M. Balagurov, V. Yu. Pomjakushin, D. V. Sheptyakov, V. L. Aksenov, N. A. Babushkina, L. M. Belova, O. Yu. Gorbenko, and A. R. Kaul, “A-cation size and oxygen isotope substitution effects on (La1 − yPry)0.7Ca0.3MnO3 structure,” Eur. Phys. J. B 19, 215–223 (2001).CrossRefADSGoogle Scholar
  47. 47.
    A. M. Balagurov, I. A. Bobrikov, V. Yu. Pomyakushin, D. V. Sheptyakov, N. A. Babushkina, O. Yu. Gorbenko, M. S. Kartavtseva, and A. R. Kaul, “Effect of isotopic composition and microstructure on the crystalline and magnetic phase states in R0.5Sr0.5MnO3,” J. Exp. Theor. Phys. 106, 528 (2008).CrossRefADSGoogle Scholar
  48. 48.
    P. Scardi, M. Ortolani, and M. Leoni, “WPPM: Micro-structural analysis beyond the Rietveld method,” Mater. Sci. Forum 651, 155–171 (2010).CrossRefGoogle Scholar
  49. 49.
    A. M. Balagurov, I. A. Bobrikov, J. Grabis, D. Jakovlevs, A. Kuzmin, M. Maiorov, and N. Mironova-Ulmane, “Neutron scattering study of structural and magnetic size effects in NiO,” IOP Conf. Ser.: Mater. Sci. Eng. 49, 012021 (2013).CrossRefGoogle Scholar
  50. 50.
    I. A. Bobrikov, A. M. Balagurov, Hu Chih-Wei, Lee Chih-Hao, Deleg Sangaa, and D. A. Balagurov, “Structural evolution in LiFePO4-based battery materials: In-situ and ex-situ time-of-flight neutron diffraction study,” J. Power Sources 258, 356–364 (2014).CrossRefADSGoogle Scholar
  51. 51.
    G. D. Bokuchava, V. V. Luzin, J. Schreiber, and Yu. V. Taran, “Residual stress investigations in austenitic steel samples with different degree of low cycle fatigue,” Text. Microstruct. 33, 279–289 (1999).CrossRefGoogle Scholar
  52. 52.
    V. L. Aksenov, A. M. Balagurov, G. D. Bokuchava, A. P. Bulkin, V. A. Kudryashev, V. G. Simkin, Yu. V. Taran, V. A. Trounov, N. R. Shamsutdinov, and Yu. Shreiber, “Internal mechanical stress investigations in materials and products on the high-resolution Fourier diffractometer at the IBR-2 reactor,” in Conf. RSNE-97 (Dubna, 1997), Vol. 1, p. 69 [in Russian].Google Scholar
  53. 53.
    V. A. Kudryashev, V. A. Trounov, and V. G. Mouratov, “Improvement of Fourier method and Fourier diffractometer for internal residual strain measurements,” Physica B (Amsterdam) 234236, 1138–1140 (1997).CrossRefGoogle Scholar
  54. 54.
    E. S. Kuzmin, A. M. Balagurov, G. D. Bokuchava, V. V. Zhuk, V. A. Kudryashev, A. P. Bulkin, and V. A. Trounov, “Detector for the FSD Fourier-diffractometer based on ZnS(Ag)/6LiF scintillation screen and wavelength shifting fiber readout,” J. Neutron Res. 10, 31–41 (2002).CrossRefGoogle Scholar
  55. 55.
    G. D. Bokuchava, A. M. Balagurov, V. V. Sumin, and I. V. Papushkin, “Neutron Fourier diffractometer FSD for residual stress studies in materials and industrial components,” J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 4(6), 879–890 (2010).CrossRefGoogle Scholar
  56. 56.
    V. A. Trunov, V. A. Kudryashev, V. A. Ulyanov, A. P. Bulkin, V. G. Muratov, T. K. Korotkova, A. F. Shchebetov, P. Hiismäki, H. Pöyry, A. Tiitta, O. Antson, H. Mutka, H. Kukkonen, and K. Tilli, “High resolution diffractometer mini-SFINKS,” Soobshch. No.1277, LIYaF (Leningrad Inst. of Nuclear Physics, Leningrad, 1987) [in Russian].Google Scholar
  57. 57.
    V. A. Drozdov, V. A. Butenko, and V. I. Prihodko, “A multi-DSP system for the neutron high resolution Fourier diftractometer,” IEEE Trans. Nucl. Sci. 45, 1928 (1998).CrossRefADSGoogle Scholar
  58. 58.
    F. V. Levchanovskiy and S. M. Murashkevich, “The data acquisition system for neutron spectrometry—a new approach and implementation,” in Proc. of XXIV Intern. Symp. on Nuclear Electronics & Computing (NEC’2013), E10-11-136 (Dubna, 2013), pp. 176–179.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • A. M. Balagurov
    • 1
  • I. A. Bobrikov
    • 1
  • G. D. Bokuchava
    • 1
  • V. V. Zhuravlev
    • 1
  • V. G. Simkin
    • 1
  1. 1.Frank Laboratory of Neutron PhysicsJoint Institute for Nuclear ResearchDubnaRussia

Personalised recommendations