Physics of Particles and Nuclei

, Volume 45, Issue 3, pp 529–549 | Cite as

The ZFITTER project

  • A. Akhundov
  • A. B. Arbuzov
  • S. Riemann
  • T. Riemann
Article

Abstract

The ZFITTER project is aimed at the computation of high-precision theoretical predictions for various observables in high-energy electron-positron annihilation and other processes. The stages of the project development are described. Accent is made on applications to the analysis of LEP data. The present status of the project and perspectives are given as well.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Akhundov, D. Bardin, and T. Riemann, “Hunting the hidden standard Higgs,” Phys. Lett. B 166, 111 (1986).ADSGoogle Scholar
  2. 2.
    S. Glashow, “Partial symmetries of weak interactions,” Nucl. Phys. 22, 579 (1961).Google Scholar
  3. 3.
    S. Weinberg, “A model of leptons,” Phys. Rev. Lett. 19, 1264 (1967).ADSGoogle Scholar
  4. 4.
    A. Salam, Proc. of the Eighth Nobel Symp., Ed. by N. Svartholm (Wiley-Intersci., N. Y., 1968).Google Scholar
  5. 5.
    G. ’t Hooft and M. Veltman, “Regularization and renormalization of gauge fields,” Nucl. Phys. B 44, 189 (1972).ADSGoogle Scholar
  6. 6.
    C. Wohl, et al. (Particle Data Group Collab.), “Review of particle properties,” Rev. Mod. Phys. 56, S1 (1984).ADSGoogle Scholar
  7. 7.
    LEP Electroweak Working Group (LEPEWWG) http://lepewwg.web.cern.ch/LEPEWWG/.
  8. 8.
    J. Beringer, et al. (Particle Data Group Collab.), “Review of Particle Physics (RPP),” Phys. Rev. D 86, 010001 (2012).ADSGoogle Scholar
  9. 9.
    D. Bardin, et al., “A realistic approach to the standard Z peak,” Z. Phys. C 44, 493 (1989).Google Scholar
  10. 10.
    D. Y. Bardin, et al., “DIZET: A program package for the calculation of electroweak one loop corrections for the process e + e f + f around the Z 0 peak,” Comput. Phys. Commun. 59, 303 (1990).ADSGoogle Scholar
  11. 11.
    D. Bardin, et al., “ZFITTER: An analytical program for fermion pair production in e + e annihilation,” Preprint CERN/TH.6443, 1992, arXiv:hep-ph/9412201.Google Scholar
  12. 12.
    D. Bardin, et al., “ZFITTER v.6.21: A semi-analytical program for fermion pair production in e + e annihilation,” Comput. Phys. Commun. 133, 229 (2001).ADSMATHGoogle Scholar
  13. 13.
    A. Arbuzov, et al., “ZFITTER: A Semi-analytical program for fermion pair production in e + e annihilation, from version 6.21 to version 6.42,” Comput. Phys. Commun. 174, 728 (2006).ADSGoogle Scholar
  14. 14.
    G. Montagna, et al., “TOPAZ0: A Program for computing observables and for fitting cross-sections and forward—backward asymmetries around the Z 0 peak,” Comput. Phys. Commun. 76, 328 (1993).ADSGoogle Scholar
  15. 15.
    G. Montagna, et al., “TOPAZ0 2.0: A Program for computing deconvoluted and realistic observables around the Z 0 peak,” Comput. Phys. Commun. 93, 120 (1996).ADSGoogle Scholar
  16. 16.
    G. Montagna, et al., “TOPAZ0 4.0: A new version of a computer program for evaluation of deconvoluted and realistic observables at LEP-1 and LEP-2,” Comput. Phys. Commun. 117, 278 (1999).ADSGoogle Scholar
  17. 17.
    M. Kobayashi and T. Maskawa, “CP violation in the renormalizable theory of weak interaction,” Prog. Theor. Phys. 49, 652 (1973).ADSGoogle Scholar
  18. 18.
    F. Abe, et al. (CDF Collab.), “Observation of top quark production in \(\bar pp\) collisions,” Phys. Rev. Lett. 74, 2626 (1995).ADSGoogle Scholar
  19. 19.
    S. Abachi, et al. (D 0 Collab.), “Observation of the top quark,” Phys. Rev. Lett. 74, 2632 (1995).ADSGoogle Scholar
  20. 20.
    G. Aad, et al. (ATLAS Collab.), “Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC,” Phys. Lett. B 716, 1 (2012).ADSGoogle Scholar
  21. 21.
    S. Chatrchyan, et al. (CMS Collab.), “Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC,” Phys. Lett. B 716, 30 (2012).ADSGoogle Scholar
  22. 22.
    F. Englert and R. Brout, “Broken symmetry and the mass of gauge vector mesons,” Phys. Rev. Lett. 13, 321 (1964).ADSMathSciNetGoogle Scholar
  23. 23.
    P. W. Higgs, “Broken symmetries and the masses of gauge bosons,” Phys. Rev. Lett. 13, 508 (1964).ADSMathSciNetGoogle Scholar
  24. 24.
    P. W. Higgs, “Broken symmetries, massless particles and gauge fields,” Phys. Lett. 12, 132 (1964).ADSGoogle Scholar
  25. 25.
    Press release from Royal Swedish Academy of Sciences, 8 October 2013, available from http://www.nobelprize.org/nobel_prizes/physics/laureates/2013/press.pdf.
  26. 26.
    The Class for Physics of the Royal Swedish Academy of Sciences. Scientific Background on the Nobel Prize in Physics 2013: The BEH-Mechanism, Interactions with Short Range Forces and Scalar Particles. Available from http://www.nobelprize.org/nobel_prizes/physics/laureates/2013/advanced-physicsprize2013.pdf.
  27. 27.
    J. Mnich, “Experimental tests of the standard model in e + e \(f\bar f\) at the Z resonance,” Phys. Rept. 271, 181 (1996).ADSGoogle Scholar
  28. 28.
    O. Eberhardt, “Extra doublets—Global analyses of Standard Model extensions in the fermionic or scalar sector,” PhD Thesis (KIT, Karlsruhe, 2013), arXiv:1309.1278.Google Scholar
  29. 29.
    S. Schael, et al., (ALEPH, DELPHI, L3, OPAL, SLD, LEP Electroweak Working Group, SLD Electroweak Group, SLD Heavy Flavour Group Collab.), “Precision electroweak measurements on the Z resonance,” Phys. Rept. 427, 257 (2006).Google Scholar
  30. 30.
    S. Schael, et al., (ALEPH, DELPHI, L3, OPAL, SLD, LEP Electroweak Working Group, SLD Electroweak Group, SLD Heavy Flavour Group Collab.), “Electroweak measurements in electron-positron collisions at W-boson-pair energies at LEP,” Phys. Rept. 532, 119 (2013).Google Scholar
  31. 31.
    D. Y. Bardin, “Twelve years of precision calculations for LEP. What’s next?,” J. Phys. G 29, 75 (2003).ADSGoogle Scholar
  32. 32.
    D. Y. Bardin, L. Kalinovskaya, G. Nanava, “An electroweak library for the calculation of EWRC to e + e \(f\bar f\) within the topfit project,” arXiv:hep-ph/0012080.Google Scholar
  33. 33.
    J. Fleischer, et al., “Complete electroweak one loop radiative corrections to top pair production at TESLA: A Comparison,” arXiv:hep-ph/0202109.Google Scholar
  34. 34.
    J. Fleischer, et al., “Electroweak one loop corrections for e + e annihilation into \(t\bar t\) including hard bremsstrahlung,” Eur. Phys. J. C 31, 37 (2003).ADSGoogle Scholar
  35. 35.
    W. Beenakker, “Electroweak corrections: Techniques and applications,” PhD Thesis (Univ. Leiden, 1989).Google Scholar
  36. 36.
    D. Bardin and O. Fedorenko, “On high order effects for fermion elastic scattering processes in Weinberg-Salam theory. 1. Renormalization scheme,” Dubna preprint JINR-P2-11413, 1978.Google Scholar
  37. 37.
    D. Bardin and O. Fedorenko, “On high order effects for fermion elastic scattering processes in Weinberg-Salam theory. 2. Calculation of one loop diagrams,” Dubna preprint JINR-P2-11414, 1978.Google Scholar
  38. 38.
    D. Bardin and O. Fedorenko, “The one-loop approximation for the amplitude of the process νl q 1lq 2 in the Weinberg-Salam theory,” Dubna preprint JINR-P2-11461, 1978, [in Russian].Google Scholar
  39. 39.
    D. Bardin, P. Khristova, and O. Fedorenko, “On the lowest order electroweak corrections to spin 1/2 fermion scattering. 1. The one loop diagrammar,” Nucl. Phys. B 175, 435 (1980).ADSGoogle Scholar
  40. 40.
    D. Y. Bardin, P. K. Khristova, and O. Fedorenko, “On the lowest order electroweak corrections to spin 1/2 fermion scattering. 2. The one loop amplitudes,” Nucl. Phys. B 197, 1 (1982).ADSGoogle Scholar
  41. 41.
    D. Bardin, O. Fedorenko, and P. Khristova, “One loop effects in Weinberg-Salam theory,” Yad. Fiz. 35, 1220 (1982), [in Russian].Google Scholar
  42. 42.
    D. Bardin and P. Khristova, “Electroweak one loop corrections to amplitudes of fermion annihilation into a neutral vector boson pair,” Dubna preprint JINR-P2-82-836, 1982.Google Scholar
  43. 43.
    D. Bardin, O. Fedorenko, and P. Khristova, “On the lowest order electroweak corrections to fermion—boson scattering. Selfenergy and vertex diagrams,” Dubna preprint JINR-P2-82-840, 1982.Google Scholar
  44. 44.
    A. Akhundov, D. Bardin, and T. Riemann, “Electroweak one loop corrections to the decay of the neutral vector boson,” Nucl. Phys. B 276, 1 (1986).ADSGoogle Scholar
  45. 45.
    D. Bardin, S. Riemann, and T. Riemann, “Electroweak one loop corrections to the decay of the charged vector boson,” Z. Phys. C 32, 121 (1986).ADSGoogle Scholar
  46. 46.
    P. K. Khristova, “The one loop effects in the electroweak Glashow-Weinberg-Salam theory,” Acta Phys. Polon. B 18, 3 (1987).Google Scholar
  47. 47.
    H. Czyz, et al., “Is the anapole moment a physical observable?,” Can. J. Phys. 66, 132 (1988).ADSGoogle Scholar
  48. 48.
    G. Mann and T. Riemann, “On mass shell renormalization of the Weinberg-Salam theory: An introductory lecture,” Zeuthen preprint PHE 83-09, 1983.Google Scholar
  49. 49.
    G. Mann and T. Riemann, “Particle mixing and renormalization in the Weinberg-Salam theory,” Talk at “Symposium Ahrenshoop 1981 on Special Topics In Gauge Field Theories,” Zeuthen preprint PHE 81-07, 1981, p. 88.Google Scholar
  50. 50.
    G. Mann and T. Riemann, “Muon number nonconserving decay of a heavy neutral gauge boson,” Zeuthen preprint PHE 82-5, 1982.Google Scholar
  51. 51.
    G. Mann and T. Riemann, “Nondiagonal Z decay: Zeμ,” Proc. of “Neutrino “82” (Balatonfuered, Hungary, 1982), vol. 2, p. 58.Google Scholar
  52. 52.
    G. Mann and T. Riemann, “Effective flavor changing weak neutral current in the standard theory and Z boson decay,” Annalen Phys., 1984, vol. 40, p. 334.Google Scholar
  53. 53.
    J. I. Illana and T. Riemann, “Charged lepton flavour violation from massive neutrinos in Z decays,” Phys. Rev. D 63, 053004 (2001).ADSGoogle Scholar
  54. 54.
    J. I. Illana and M. Masip, “Lepton flavor violation in Z and lepton decays in supersymmetric models,” Phys. Rev. D 67, 035004 (2003).ADSGoogle Scholar
  55. 55.
    A. Sirlin and A. Ferroglia, “Radiative corrections in precision electroweak physics: a historical perspective,” Rev. Mod. Phys. 85, 263 (2013).ADSGoogle Scholar
  56. 56.
    D. Bardin, et al., “Electroweak radiative corrections to deep inelastic scattering at HERA. Neutral current scattering,” Z. Phys. C 42, 679 (1989).Google Scholar
  57. 57.
    A. Arbuzov, et al., “Hector 1.00: A Program for the calculation of QED, QCD and electroweak corrections to e p and lepton+− N deep inelastic neutral and charged current scattering,” Comput. Phys. Commun. 94, 128 (1996).ADSGoogle Scholar
  58. 58.
    D. Bardin, et al., “ZFITTER v.6.21: A semi-analytical program for fermion pair production in e + e annihilation,” Comput. Phys. Commun. 133, 229 (2001).ADSMATHGoogle Scholar
  59. 59.
    D. Y. Bardin and O. Fedorenko, “Evaluation of systematic uncertainties caused by radiative corrections in experiments on deep inelastic lepton neutrino n scattering,” Sov. J. Nucl. Phys. 30, 418 (1979).Google Scholar
  60. 60.
    D. Y. Bardin, O. Fedorenko, N. Shumeiko, “On the radiative corrections to p odd asymmetry in deep inelastic scattering of polarized leptons on nucleons,” Sov. J. Nucl. Phys. 32, 403 (1980).Google Scholar
  61. 61.
    D. Bardin, et al., “Energy dependent width effects in e + e annihilation near the Z boson pole,” Phys. Lett. B 206, 539 (1988).ADSGoogle Scholar
  62. 62.
    S. Riemann, “A comparison of programs used in L3 for the analysis of Bhabha scattering,” Zeuthen Preprint. PHE-91-04, 1991.Google Scholar
  63. 63.
    D. Bardin, W. Hollik, and T. Riemann, “Bhabha scattering with higher order weak loop corrections,” Z. Phys. C 49, 485 (1991).Google Scholar
  64. 64.
    J. Field and T. Riemann, “BHAGENE3: A Monte Carlo event generator for lepton pair production and wide angle Bhabha scattering in e + e collisions near the Z peak,” Comput. Phys. Commun. 94, 53 (1996).ADSGoogle Scholar
  65. 65.
    D. Bardin, et al., “Electroweak radiative corrections to deep inelastic scattering at HERA. Charged current scattering,” Z. Phys. C 44, 149 (1989).Google Scholar
  66. 66.
    D. Bardin, et al., “Predictions for \(\bar \nu \)νγ production at LEP,” Eur. Phys. J. C 24, 373 (2002).Google Scholar
  67. 67.
    D. Y. Bardin, et al., “Atomic parity violation and precision physics,” Eur. Phys. J. C 22, 99 (2001).ADSGoogle Scholar
  68. 68.
    A. Leike, S. Riemann, and T. Riemann, “ZZ′ mixing in presence of standard weak loop corrections,” arXiv:hep-ph/9808374. νGoogle Scholar
  69. 69.
    T. Aaltonen, et al. (CDF Collab.), “Indirect measurement of 2θW(MW) using e + e pairs in the Z-boson region with \(p\bar p\) collisions at a center-of-momentum energy of 1.96 TeV,” Phys. Rev. D 88, 072002 (2013).ADSGoogle Scholar
  70. 70.
    W. Wetzel, “Electroweak radiative corrections for e + e → μ+μ at LEP energies,” Nucl. Phys. B 227, 1 (1983).ADSGoogle Scholar
  71. 71.
    B. Lynn and R. Stuart, “Standard model electroweak radiative corrections to longitudinal polarization asymmetry A Pol and forward-backward asymmetry A FB in e + e → μ+μ on and off the Z 0 resonance,” Nucl. Phys. B 253, 216 (1985).ADSGoogle Scholar
  72. 72.
    F. A. Berends, R. Kleiss, and S. Jadach, “Radiative corrections to muon pair and quark pair production in electron-positron collisions in the Z 0 region,” Nucl. Phys. B 202, 63 (1982).ADSGoogle Scholar
  73. 73.
    D. Bardin and N. Shumeiko, “An exact calculation of the lowest order electromagnetic correction to the elastic scattering,” Nucl. Phys. B 127, 242 (1977).ADSGoogle Scholar
  74. 74.
    A. A. Akhundov, et al., “Model independent QED corrections to the process epeX,” Fortsch. Phys. 44, 373 (1996).ADSGoogle Scholar
  75. 75.
    A. Akhundov, et al., “Some integrals for exact calculation of QED bremsstrahlung,” Dubna preprint JINR-E2-84-777, 1984.Google Scholar
  76. 76.
    A. Akhundov, et al., “Exact calculations of the lowest order electromagnetic corrections for the processes e + e → μ+μ+τ),” Sov. J. Nucl. Phys. 42, 762 (1985).Google Scholar
  77. 77.
    O. Fedorenko and T. Riemann, “Analytic bremsstrahlung integration for the process e + e → μ+μγ in QED,” Acta Phys. Polon. B 18, 761 (1987).Google Scholar
  78. 78.
    D. Bardin, et al., “Electroweak working group report,” 1995, arXiv:hep-ph/9709229.Google Scholar
  79. 79.
    K. Chetyrkin, J. H. Kühn, and A. Kwiatkowski, “QCD corrections to the e + e cross-section and the Z boson decay rate: concepts and results,” Phys. Rept. 277, 189 (1996).ADSGoogle Scholar
  80. 80.
    D. Bardin, M. Grünewald, and G. Passarino, “Precision calculation project report,” arXiv:hep-ph/9902452.Google Scholar
  81. 81.
    D. Y. Bardin and G. Passarino, The Standard Model in the Making: Precision Study of the Electroweak Interactions (Oxford Univ. Press, 1999).Google Scholar
  82. 82.
    W. Beenakker, F. A. Berends, and W. van Neerven, “Applications of renormalization group methods to radiative corrections,” Proc. of Workshop on Electroweak Radiative Corrections, 3–7 April 1989, Ringberg, Germany, Ed. by J. H. Kühn, Radiative Corrections for e + e Collisions (Springer-Verlag, Berlin, 1989), p. 3.Google Scholar
  83. 83.
    F. A. Berends and R. Kleiss, “Distributions in the process e + e → μ+μ(γ),” Nucl. Phys. B 177, 237 (1981).ADSGoogle Scholar
  84. 84.
    S. Jadach, J. H. Kühn, and Z. Was, “TAUOLA: A Library of Monte Carlo programs to simulate decays of polarized tau leptons,” Comput. Phys. Commun. 64, 275 (1990).ADSGoogle Scholar
  85. 85.
    S. Jadach, B. Ward, and Z. Was, “The Monte Carlo program KORALZ, version 3.8, for the lepton or quark pair production at LEP/SLC energies,” Comput. Phys. Commun. 66, 276 (1991).ADSMATHGoogle Scholar
  86. 86.
    G. Montagna, F. Piccinini, and O. Nicrosini, “Structure function formulation of e + e \(f\bar f\) around the Z 0 resonance in realistic setup,” Phys. Rev. D 48, 1021 (1993).ADSGoogle Scholar
  87. 87.
    S. Jadach, B. Ward, and Z. Was, “The precision Monte Carlo event generator KK for two-fermion final states in e + e collisions,” Comput. Phys. Commun. 130, 260 (2000).ADSMATHGoogle Scholar
  88. 88.
    Z physics at LEP1: Event generators and software,” Eds. by G. Altarelli, R. Kleiss, and C. Verzegnassi, CERN Yellow Report. CERN-89-08, 1989, vol. 3.Google Scholar
  89. 89.
    T. Riemann, M. Sachwitz, and D. Bardin, “The Z boson line shape at LEP,” Proc. of XI Warsaw Symposium on Elementary Particle Physics: New Theories in Physics, 23–27 May 1988, Kazimierz, Poland, Eds. Z. Ajduk, S. Pokorski, A. Trautman, and N. J. Teaneck, World Scientific, 1988, pp. 238–246.Google Scholar
  90. 90.
    M. Consoli, W. Hollik, and F. Jegerlehner, “The effect of the top quark on the M(W)-M(Z) interdependence and possible decoupling of heavy fermions from low energy physics,” Phys. Lett. B 227, 167 (1989).ADSGoogle Scholar
  91. 91.
    F. A. Berends, R. Kleiss, S. Jadach, “Monte Carlo simulation of radiative corrections to the processes e + e → μ+μ and e + e \(\bar qq\) in the Z 0 region,” Comput. Phys. Commun. 29, 185 (1983).ADSGoogle Scholar
  92. 92.
    D. Bardin, O. Fedorenko, and T. Riemann, “The electromagnetic α3 contributions to e + e annihilation into fermions in the electroweak theory. Total cross-section σt and integrated asymmetry A FB,” Dubna preprint JINR-E2-87-663, 1987.Google Scholar
  93. 93.
    D. Bardin, et al., “The electromagnetic α3 contributions to e + e annihilation into fermions in the electroweak theory. Total cross-section σt and integrated asymmetry A FB,” Dubna preprint JINR-E2-88-324, 1988.Google Scholar
  94. 94.
    A. Leike, T. Riemann, and M. Sachwitz, “QED corrected extra Z boson effects at e + e colliders,” Phys. Lett. B 241, 267 (1990).ADSGoogle Scholar
  95. 95.
    A. Leike and T. Riemann, “QED corrections to the forward backward asymmetry with extra Z bosons for e + e f + f ,” Z. Phys. C 51, 113 (1991).Google Scholar
  96. 96.
    A. Djouadi, et al., “Signals of new gauge bosons at future e + e colliders,” Z. Phys. C 56, 289 (1992).ADSGoogle Scholar
  97. 97.
    O. Adriani, et al. (L3 Collab.), “Search for a Z′ at the Z resonance,” Phys. Lett. B 306, 187 (1993).ADSGoogle Scholar
  98. 98.
    S. Riemann, “Suche nach einem Z′-Boson auf der Z-Resonanz mit dem L3-Detektor am LEP-Beschleuniger,” Dissertation (Technische Hochschule Aachen, 1994); Internal Report: DESY-Zeuthen 94-01, September 1994.Google Scholar
  99. 99.
    D. Bardin, et al., “The convolution integral for the forward-backward asymmetry in e + e annihilation,” Phys. Lett. B 229, 405 (1989).ADSGoogle Scholar
  100. 100.
    D. Bardin, et al., “Analytic approach to the complete set of QED corrections to fermion pair production in e + e annihilation,” Nucl. Phys. B 351, 1 (1991).ADSGoogle Scholar
  101. 101.
    D. Bardin, et al., “QED corrections with partial angular integration to fermion pair production in e + e annihilation,” Phys. Lett. B 255, 290 (1991).ADSGoogle Scholar
  102. 102.
    M. Bilenky and A. Sazonov, “QED corrections at Z 0 pole with realistic kinematical cuts,” Dubna preprint JINR-E2-89-792, 1989.Google Scholar
  103. 103.
    G. Passarino, “Hard bremsstrahlung corrections for the process e + e → μ+μ,” Nucl. Phys. B 204, 237 (1982).ADSGoogle Scholar
  104. 104.
    P. Christova, et al., “Predictions of ZFITTER v.6 for fermion pair production with acollinearity cut,” arXiv:hep-ph/9908289.Google Scholar
  105. 105.
    P. Christova, et al., “Radiative corrections to e + e \(\bar ff\),” arXiv:hep-ph/0002054.Google Scholar
  106. 106.
    P. Christova, et al., “Predictions for fermion pair production at LEP,” arXiv:hep-ph/9812412.Google Scholar
  107. 107.
    M. A. Jack, “Semianalytical calculation of QED radiative corrections to e + e \(\bar ff\) with special emphasis on kinematical cuts to the final state,” arXiv:hep-ph/0009068.Google Scholar
  108. 108.
    P. Christova, M. Jack, and T. Riemann, “Hard photon emission in e + e \(\bar ff\) with realistic cuts,” Phys. Lett. B 456, 264 (1999).ADSGoogle Scholar
  109. 109.
    H. Strubbe, “Manual for Schoonschip: A CDC 6000/7000 program for symbolic evaluation of algebraic expressions,” Comput. Phys. Commun. 8, 1 (1974).ADSGoogle Scholar
  110. 110.
    M. J. Veltman and D. N. Williams, Schoonschip’91, arXiv:hep-ph/9306228.Google Scholar
  111. 111.
    R. N. Fedorova, et al., “Computer algebra in physical research of JINR,” Lecture Notes in Computer Science 378, 1 (1989).Google Scholar
  112. 112.
    J. Vermaseren, “Symbolic manipulation with FORM,” Version 2. Computer Algebra (Nederland, Amsterdam, 1991).Google Scholar
  113. 113.
    J. Vermaseren, “New features of FORM,” arXiv:math-ph/0010025.Google Scholar
  114. 114.
    F. A. Berends, et al., “The standard Z peak,” Phys. Lett. B 203, 177 (1988).ADSGoogle Scholar
  115. 115.
    A. Leike, T. Riemann, and J. Rose, “S matrix approach to the Z line shape,” Phys. Lett. B 273, 513 (1991).ADSGoogle Scholar
  116. 116.
    T. Riemann, “Cross-section asymmetries around the Z peak,” Phys. Lett. B 293, 451 (1992).ADSGoogle Scholar
  117. 117.
    S. Kirsch and S. Riemann, A Combined Fit to the L3 Data Using the S-Matrix Approach (First Resultats), L3 note, No. 1233, 1992.Google Scholar
  118. 118.
    S. Kirsch and S. Riemann, L3 Results of Model-Independent Analyses, L3 note, No. 1656, 1994.Google Scholar
  119. 119.
    O. Adriani, et al. (L3 Collab.), “An S matrix analysis of the Z resonance,” Phys. Lett. B 315, 494 (1993).ADSGoogle Scholar
  120. 120.
    S. Kirsch and T. Riemann, “SMATASY: A program for the model independent description of the Z resonance,” Comput. Phys. Commun. 88, 89 (1995).ADSGoogle Scholar
  121. 121.
    M. Awramik, M. Czakon, and A. Freitas, “Electroweak two-loop corrections to the effective weak mixing angle,” JHEP 0611, 048 (2006).ADSGoogle Scholar
  122. 122.
    A. Akhundov, D. Y. Bardin, and A. Leike, “QED radiative corrections to massive fermion production in e + e annihilation,” Phys. Lett. B 261, 321 (1991).ADSGoogle Scholar
  123. 123.
    A. Arbuzov, D. Y. Bardin, and A. Leike, “Analytic final state corrections with cut for e + e → massive fermions,” Mod. Phys. Lett. A 7, 2029 (1992); “Erratum,” Ibid. 9, 1515 (1994).ADSGoogle Scholar
  124. 124.
    M. Jack, et al., “Predictions for fermion pair production at e + e colliders,” Nucl. Phys. Proc. Suppl. 89, 15 (2000).ADSGoogle Scholar
  125. 125.
    A. Arbuzov, “Higher order pair corrections to electron positron annihilation,” JHEP 0107, 043 (2001).ADSGoogle Scholar
  126. 126.
    A. Arbuzov, “Nonsinglet splitting functions in QED,” Phys. Lett. B 470, 252 (1999).ADSGoogle Scholar
  127. 127.
    F. Boudjema, et al., “Standard model processes,” CERN Yellow Report “Physics at LEP 2” 1, 207.Google Scholar
  128. 128.
    A. B. Arbuzov, et al., “Structure function approach in QED for high energy processes,” Phys. Part. Nucl. 41, 394 (2010).Google Scholar
  129. 129.
    A. B. Arbuzov, et al., “Radiative corrections to the Bhabha scattering,” Phys. Part. Nucl. 41, 636 (2010).Google Scholar
  130. 130.
    D. Y. Bardin and G. Passarino, “Upgrading of precision calculations for electroweak observables,” arXiv:hep-ph/9803425.Google Scholar
  131. 131.
    M. Kobel, Z. Was, et al. (Two Fermion Working Group Collab.), “Two-fermion production in electron positron collisions,” arXiv:hep-ph/0007180.Google Scholar
  132. 132.
    T. Riemann, et al., “On the derivation of standard model parameters from the Z peak,” Proc. of Workshop on Electroweak Radiative Corrections, 3–7 April 1989, Ringberg, Germany, Ed. by J. H. Kuhn, Radiative Corrections for e + e Collisions (Springer-Verlag, Berlin, 1989), p. 349.Google Scholar
  133. 133.
    D. Bardin and T. Riemann, “Electroweak radiative corrections at the Z peak,” Proc. of Workshop on Radiative Corrections: Results And Perspectives (RADCOR1989), 9–14 July 1989, Brighton, England, Eds. N. Dombey and F. Boudjema (Plenum Press, N.Y., 1990), NATO Advanced Study Institute, Series B: Physics 233, 169.Google Scholar
  134. 134.
    M. Böhm, et al., “Report on working group A: Renormalization schemes for electroweak radiative corrections,” Proc. of Workshop on Radiative Corrections: Results and Perspectives (RADCOR1989), 9–14 July 1989, Brighton, England, Eds. N. Dombey and F. Boudjema (Plenum Press, N.Y., 1990), NATO Advanced Study Institute, Series B: Physics 233, 233.Google Scholar
  135. 135.
    M. Böhm, et al., “Forward-backward asymmetries,” in CERN Yellow Report 89-08, preprint CERN/TH-5536, 1989.Google Scholar
  136. 136.
    R. Leiste, T. Riemann, M. Sachwitz, et al., “Precise measurement of M Z and ΓZ from the Z peak: A contribution to the running strategy of LEP 1,” Zeuthen preprint PHE-89-02, 1989.Google Scholar
  137. 137.
    D. Bardin, et al., “On some new analytic calculations for the process e + e \(\bar f\) f(),” Preprint CERN-TH-5434/89, 1989.Google Scholar
  138. 138.
    M. S. Bilenky and M. Sachwitz, “The forward-backward asymmetry A FB in e + e annihilation,” Zeuthen preprint PHE-89-10, 1989.Google Scholar
  139. 139.
    D. Bardin and A. Chizhov, “On the Oemαs) corrections to electroweak observables,” Proc. of Int. Topical Seminar on Physics of e + e interactions at LEP energies, 15–16 Nov. 1988, JINR Dubna, USSR, Eds. D. Bardin, et al., JINR preprint E2-89-525, 1989, pp. 42–48.Google Scholar
  140. 140.
    A. Djouadi, “O(ααs) vacuum polarization functions of the standard model gauge bosons,” Nuovo Cim. A 100, 357 (1988).ADSGoogle Scholar
  141. 141.
    B. A. Kniehl, “Two loop corrections to the vacuum polarizations in perturbative QCD,” Nucl. Phys. B 347, 86 (1990).ADSGoogle Scholar
  142. 142.
    B. Adeva, et al. (L3 Collab.), “A determination of the properties of the neutral intermediate vector boson Z 0,” Phys. Lett. B 231, 509 (1989).ADSGoogle Scholar
  143. 143.
    B. Adeva, et al. (L3 Collab.), “Measurement of g(a) and g(ν), the neutral current coupling constants to leptons,” Phys. Lett. B 236, 109 (1990).ADSGoogle Scholar
  144. 144.
    B. Adeva et al. (L3 Collab.), “A measurement of the Z 0 leptonic partial widths and the vector and axial vector coupling constants,” Phys. Lett. B 238, 122 (1990).ADSGoogle Scholar
  145. 145.
    B. Adeva et al. (L3 Collab.), “A measurement of the Z 0 leptonic partial widths and the forward—backward asymmetry,” Internal note L3-005, CALT-68-1617, 1990.Google Scholar
  146. 146.
    B. Adeva, et al. (L3 Collab.), “Measurement of Z 0\(b\bar b\) decay properties,” Phys. Lett. B 241, 416 (1990).ADSGoogle Scholar
  147. 147.
    B. Adeva, et al. (L3 Collab.), “A determination of electroweak parameters from Z 0 → μ+μ(γ),” Phys. Lett. B 247, 473 (1990).ADSGoogle Scholar
  148. 148.
    B. Adeva, et al. (L3 Collab.), “A precision measurement of the number of neutrino species,” Phys. Lett. B 249, 341 (1990).ADSGoogle Scholar
  149. 149.
    B. Adeva, et al. (L3 Collab.), “A determination of electroweak parameters from Z 0 decays into charged leptons,” Phys. Lett. B 250, 183 (1990).ADSGoogle Scholar
  150. 150.
    P. Aarnio, et al. (DELPHI Collab.), “Measurement of the mass and width of the Z 0 particle from multi-hadronic final states produced in e + e annihilations,” Phys. Lett. B 231, 539 (1989).ADSGoogle Scholar
  151. 151.
    P. Aarnio, et al. (DELPHI Collab.), “Study of hadronic decays of the Z 0 boson,” Phys. Lett. B 240, 271 (1990).ADSGoogle Scholar
  152. 152.
    P. Aarnio, et al. (DELPHI Collab.), “Study of the leptonic decays of the Z 0 boson,” Phys. Lett. B 241, 425 (1990).ADSGoogle Scholar
  153. 153.
    P. Abreu, et al. (DELPHI Collab.), “A precise measurement of the Z resonance parameters through its hadronic decays,” Phys. Lett. B 241, 435 (1990).ADSGoogle Scholar
  154. 154.
    P. Abreu, et al. (DELPHI Collab.), “DELPHI results on the Z 0 resonance parameters through its hadronic and leptonic decay modes,” CERN preprint CERN-PPE/90-119, 1990.Google Scholar
  155. 155.
    G. Alekseev, et al., “The DELPHI experiment at LEP,” Part. Nucl. Lett. 98, 5 (2001).Google Scholar
  156. 156.
    G. Burgers, “The shape and size of the Z resonance,” Eds. G. Alexander, et al., Polarization at LEP, preprint CERN-TH-5119 1, 121–135 (1988).Google Scholar
  157. 157.
    A. Borrelli, et al., “Model independent analysis of the Z line shape in e + e annihilation,” Nucl. Phys. B 333, 357 (1990).ADSGoogle Scholar
  158. 158.
    R. N. Cahn, “Analytic forms for the e + e annihilation cross-section near the Z including initial state radiation,” Phys. Rev. D 36, 2666 (1987).ADSGoogle Scholar
  159. 159.
    B. Adeva, et al. (L3 Collab.), “Measurement of Z 0 decays to hadrons and a precise determination of the number of neutrino species,” Phys. Lett. B 237, 136 (1990).ADSGoogle Scholar
  160. 160.
    W. Hollik, “Radiative corrections in the standard model and their role for precision tests of the electroweak theory,” Fortsch. Phys. 38, 165 (1990).ADSGoogle Scholar
  161. 161.
    G. Alexander, et al., “Electroweak parameters of the Z 0 resonance and the standard model: the LEP Collab.,” Phys. Lett. B 276, 247 (1992).Google Scholar
  162. 162.
    L. Arnaudon, et al. (Working Group on LEP Energy, ALEPH, DELPHI, L3, OPAL Collab.), “Measurement of the mass of the Z boson and the energy calibration of LEP,” Phys. Lett. B 307, 187 (1993).MathSciNetGoogle Scholar
  163. 163.
    D. Schaile, et al. (ALEPH, DELPHI, L3, OPAL and the LEP Electroweak Working Group Collab.), “Updated parameters of the Z 0 resonance from combined preliminary data of the LEP experiments,” Proc. of the Europ. Conf. on High Energy Physics, Marseille, France, 1993.Google Scholar
  164. 164.
    LEP, ALEPH, DELPHI, L3, OPAL, Line Shape Sub-Group of the LEP Electroweak Working Group Collab, “Combination procedure for the precise determination of Z boson parameters from results of the LEP experiments,” arXiv:hep-ex/0101027.Google Scholar
  165. 165.
    J. van der Bij, “Two loop large Higgs mass correction to vector boson masses,” Nucl. Phys. B 248, 141 (1984).ADSGoogle Scholar
  166. 166.
    B. Kniehl, et al., “Hadronic contributions to O2) radiative corrections in e + e annihilation,” Phys. Lett. B 209, 337 (1988).ADSGoogle Scholar
  167. 167.
    R. Barbieri, et al., “Two loop heavy top effects in the Standard Model,” Nucl. Phys. B 409, 105 (1993).ADSMathSciNetGoogle Scholar
  168. 168.
    G. Degrassi, S. Fanchiotti, and P. Gambino, “Current algebra approach to heavy top effects in ·(ρ),” Int. J. Mod. Phys. A 10, 1377 (1995).ADSGoogle Scholar
  169. 169.
    L. Avdeev, et al., “O(ααs2) correction to the electroweak ρ parameter,” Phys. Lett. B 336, 560 (1994); “Erratum,” Ibid. 349, 597 (1995).ADSGoogle Scholar
  170. 170.
    K. Chetyrkin, J. H. Kühn, and M. Steinhauser, “Corrections of order O(g f m t2αss) to the ρ parameter,” Phys. Lett. B 351, 331 (1995).ADSGoogle Scholar
  171. 171.
    S. Eidelman and F. Jegerlehner, “Hadronic contributions to g − 2 of the leptons and to the effective fine structure constant α(M Z2),” Z. Phys. C 67, 585 (1995).ADSGoogle Scholar
  172. 172.
    Y. Schröder and M. Steinhauser, “Four-loop singlet contribution to the rho parameter,” Phys. Lett. B 622, 124 (2005).ADSGoogle Scholar
  173. 173.
    A. Freitas, et al., “Calculation of fermionic two loop contributions to muon decay,” Nucl. Phys. Proc. Suppl. 89, 82 (2000).ADSGoogle Scholar
  174. 174.
    A. Freitas, et al., “Complete fermionic two loop results for the M(W)-M(Z) interdependence,” Phys. Lett. B 495, 338 (2000).ADSGoogle Scholar
  175. 175.
    M. Awramik, et al., “Precise prediction for the W boson mass in the standard model,” Phys. Rev. D 69, 053006 (2004).ADSGoogle Scholar
  176. 176.
    M. Awramik, et al., “Towards better constraints on the Higgs boson mass: Two-loop fermionic corrections to \(\sin ^2 \theta _{eff}^{lept} \)” arXiv:hep-ph/0409142.Google Scholar
  177. 177.
    M. Awramik, et al., “Two-loop fermionic electroweak corrections to the effective leptonic weak mixing angle in the standard model,” Nucl. Phys. Proc. Suppl. 135, 119 (2004).ADSGoogle Scholar
  178. 178.
    M. Awramik, et al., “Complete two-loop electroweak fermionic corrections to \(\sin ^2 \theta _{eff}^{b\bar b} \) and indirect determination of the Higgs boson mass,” Phys. Rev. Lett. 93, 201805 (2004).ADSGoogle Scholar
  179. 179.
    M. Awramik, M. Czakon, and A. Freitas, “Bosonic corrections to the effective weak mixing angle at O2),” Phys. Lett. B 642, 563 (2006).ADSGoogle Scholar
  180. 180.
    M. Awramik, et al., “Two-loop electroweak fermionic corrections to \(t\bar t\)” Nucl. Phys. B 813, 174 (2009).ADSMATHGoogle Scholar
  181. 181.
    P. Baikov, et al., “Complete Os4) QCD corrections to hadronic Z decays,” Phys. Rev. Lett. 108, 222003 (2012).ADSGoogle Scholar
  182. 182.
    J. Fleischer, et al., “One loop corrections to the process e + e \(c\bar c,b\bar b,t\bar t\) including hard bremsstrahlung,” arXiv:hep-ph/0203220.Google Scholar
  183. 183.
    T. Hahn, et al., “O(α) electroweak corrections to the processes e + e → ττ+, \(c\bar c,b\bar b,t\bar t\): A comparison,” arXiv:hep-ph/0307132.Google Scholar
  184. 184.
    F. Jegerlehner, “Electroweak effective couplings for future precision experiments,” Nuovo Cim. C 034S1, 31 (2011).Google Scholar
  185. 185.
    H. Baer, et al., The International Linear Collider Technical Design Report—Volume 2: Physics, arXiv:1306.6352 [hep-ph].Google Scholar
  186. 186.
    H. Flächer, et al., “Revisiting the global electroweak fit of the standard model and beyond with Gfitter,” Eur. Phys. J. C 60, 543 (2009).ADSGoogle Scholar
  187. 187.
    H. Flächer, et al., “Erratum to: Revisiting the global electroweak fit of the standard model and beyond with Gfitter,” Eur. Phys. J. C 71, 1718 (2011).ADSGoogle Scholar
  188. 188.
    P. Baikov, K. Chetyrkin, and J. Kühn, “Order α4(s) QCD corrections to Z and τ decays,” Phys. Rev. Lett. 101, 012002 (2008).ADSGoogle Scholar
  189. 189.
    G.-C. Cho and K. Hagiwara, “Supersymmetry versus precision experiments revisited,” Nucl. Phys. B 574, 623 (2000).ADSGoogle Scholar
  190. 190.
    K. Hagiwara, et al., “A novel approach to confront electroweak data and theory,” Z. Phys. C 64, 559 (1994).ADSGoogle Scholar
  191. 191.
    G.-C. Cho, et al., “The MSSM confronts the precision electroweak data and the muon g-2,” JHEP 1111, 068 (2011).ADSGoogle Scholar
  192. 192.
    S. Riemann, “Precision electroweak physics at high energies,” Rept. Prog. Phys. 73, 126201 (2010).ADSGoogle Scholar
  193. 193.
    M. Ciuchini, et al., “Electroweak precision observables, new physics and the nature of a 126 GeV Higgs boson,” JHEP 1308, 106 (2013).ADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • A. Akhundov
    • 1
  • A. B. Arbuzov
    • 2
    • 3
  • S. Riemann
    • 4
  • T. Riemann
    • 4
  1. 1.Institute of PhysicsAzerbaijan National Academy of SciencesBakuAzerbaijan
  2. 2.Bogoliubov Laboratory of Theoretical PhysicsJoint Institute for Nuclear Research JINRDubnaRussia
  3. 3.Department of Higher MathematicsDubna UniversityDubnaRussia
  4. 4.Königs WusterhausenGermany

Personalised recommendations