Physics of Particles and Nuclei

, Volume 45, Issue 1, pp 26–29 | Cite as

Perturbative QCD analysis of the Bjorken sum rule

  • A. V. Kotikov
  • B. G. Shaikhatdenov
Session 1. Spin Structure of Hadrons


We study the polarized Bjorken sum rule at low momentum transfer squared Q 2 ≤ 3 GeV2 in the twist-two approximation and to the next-to-next-to-leading order accuracy.


Spin Structure CLAS Collaboration Deep Inelastic Scattering Cross Section Deep Inelastic Scattering Cross Crewther Relation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Anselmino, A. Efremov, and E. Leader, “The theory and phenomenology of polarized deep inelastic scattering,” Phys. Rept. 261, 1 (1995); S. E. Kuhn, J.-P. Chen, and E. Leader, “Spin structure of the nucleon-status and recent results,” Prog. Part. Nucl. Phys. 63, 1 (2009).ADSCrossRefGoogle Scholar
  2. 2.
    J. D. Bjorken, “Applications of the chiral U(6)x(6) algebra of current densities,” Phys. Rev. 148, 1467 (1966); “Inelastic scattering of polarized leptons from polarized nucleons,” Phys. Rev., Ser. D 1, 1376 (1970).ADSCrossRefGoogle Scholar
  3. 3.
    K. V. Dharmawardane et al. (CLAS Collaboration), “Measurement of the x- and Q**2-dependence of the asymmetry A(1) on the nucleon,” Phys. Lett., Ser. B 641, 11 (2006); P. E. Bosted et al. (CLAS Collaboration), “Quark-hadron duality in spin structure functions g(1)p and g(1)d,” Phys. Rev., Ser. C 75, 035203 (2007); Y. Prok et al. (CLAS Collaboration), “Moments of the spin structure functions g**p(1) and g**d(1) for 0.05 < Q**2 < 3.0-GeV**2,” Phys. Lett., Ser. B 672, 12 (2009).ADSCrossRefGoogle Scholar
  4. 4.
    M. Amarian et al. (CLAS Collaboration), “The Q**2 evolution of the generalized Gerasimov-Drell-Hearn integral for the neutron using a He-3 target,” Phys. Rev. Lett. 89, 242301 (2002); 92, 022301 (2004); R. Fatemi et al. (CLAS Collaboration), “Measurement of the proton spin structure function g(1)(x, Q**2) for Q**2 from 0.15 to 1.6 GeV**2 with CLAS,” Phys. Rev. Lett. 91, 222002 (2003); A. Deur et al. (CLAS Collaboration), “Experimental determination of the evolution of the Bjorken integral at low Q**2,” Phys. Rev. Lett. 93, 212001 (2004).ADSCrossRefGoogle Scholar
  5. 5.
    K. Abe et al. (E154 Collaboration), “Precision determination of the neutron spin structure function g1(n),” Phys. Rev. Lett. 79, 26 (1997); P. L. Anthony et al. (E155 Collaboration), “Measurements of the Q**2 dependence of the proton and neutron spin structure functions g(1)**p and g(1)**n,” Phys. Lett., Ser. B 493, 19 (2000).ADSCrossRefGoogle Scholar
  6. 6.
    P. A. Baikov, K. G. Chetyrkin, and J. H. Kuhn, “Adler function, Bjorken sum rule, and the Crewther relation to order αs4 in a general gauge theory,” Phys. Rev. Lett. 104, 132004 (2010).ADSCrossRefGoogle Scholar
  7. 7.
    V. L. Khandramai et al., “Four-loop QCD analysis of the Bjorken sum rule vs. data,” Phys. Lett., Ser. B 706, 340 (2012).ADSCrossRefGoogle Scholar
  8. 8.
    R. S. Pasechnik et al., Nucleon spin structure and pQCD frontier on the move,” Phys. Rev., Ser. D 81, 016010 (2010); “Nucleon spin structure at low momentum transfers,” Phys. Rev., Ser. D 82, 076007 (2010); “Bjorken sum rule and pQCD frontier on the move,” Phys. Rev., Ser. D 78, 071902 (2008).ADSCrossRefGoogle Scholar
  9. 9.
    A. L. Kataev et al., “Next to next-to-leading order QCD analysis of the CCFR data for xF3 and F2 structure functions of the deep inelastic neutrino-nucleon scattering,” Phys. Lett., Ser. B 388, 179 (1996); “Next to next-to-leading order QCD analysis of the revised CCFR data for xF3 structure function and the higher twist contributions,” Phys. Lett., Ser. B 417, 374 (1998).ADSCrossRefGoogle Scholar
  10. 10.
    G. Grunberg, “Renormalization group improved perturbative QCD,” Phys. Lett., Ser. B 95, 70 (1980); “Renormalization scheme independent QCD and QED: the method of effective charges,” Phys. Rev., Ser. D 29, 2315 (1984).ADSCrossRefGoogle Scholar
  11. 11.
    G. Parente, A. V. Kotikov, and V. G. Krivokhizhin, “Next to next-to-leading order QCD analysis of DIS structure functions,” Phys. Lett., Ser. B 333, 190 (1994); A. V. Kotikov, G. Parente, and J. Sanchez Guillen, “Renormalization scheme invariant analysis of the DIS structure functions F2 and F(L),” Z. Phys., Ser. C 58, 465 (1993).ADSCrossRefGoogle Scholar
  12. 12.
    S. A. Larin and J. A. M. Vermaseren, “The alpha-s**3 corrections to the Bjorken sum rule for polarized electroproduction and to the Gross-Llewellyn Smith sum rule,” Phys. Lett., Ser. B 259, 345 (1991).ADSCrossRefGoogle Scholar
  13. 13.
    D. V. Shirkov, Massive Perturbative QCD, Regular in the IR Limit, arXiv:1208.2103[hep-th].Google Scholar
  14. 14.
    A. V. Kotikov, “On the behavior of DIS structure function ratio R (x, Q**2) at small x,” Phys. Lett., Ser. B 338, 349 (1994); JETP Lett. 59, 1 (1995).ADSCrossRefGoogle Scholar
  15. 15.
    D. I. Kazakov and A. V. Kotikov, “Total alpha-s correction to deep inelastic scattering cross-section ration, R = sigma-l/sigma-t in QCD. Calculation of longitudinal structure function,” Nucl. Phys., Ser. B 307, 721 (1988); Nucl. Phys., Ser. B 345 (E), 299 (1990); Yad. Fiz. 46, 1767 (1987); A. V. Kotikov, “Behavior of R = sigma-l/sigma-t ratio in QCD at x → 0 and x → 1 and its parametrization,” Sov. J. Nucl. Phys. 49, 1068 (1989).ADSCrossRefGoogle Scholar
  16. 16.
    B. Badelek, J. Kwiecinski, and A. Stasto, “A model for F(L) and R = F(L)/F(T) at low x and low Q**2,” Z. Phys., Ser. C 74, 297 (1997).Google Scholar
  17. 17.
    A. V. Kotikov, A. V. Lipatov, and N. P. Zotov, “The longitudinal structure function F(L): perturbative QCD and k(T) factorization versus experimental data at fixed W,” J. Exp. Theor. Phys. 101, 811 (2005).ADSCrossRefGoogle Scholar
  18. 18.
    D. V. Shirkov and I. L. Solovtsov, “Analytic model for the QCD running coupling with universal alpha-s(0) value,” Phys. Rev. Lett. 79, 1209 (1997).ADSCrossRefGoogle Scholar
  19. 19.
    G. Cvetic et al., “Small-x behavior of the structure function F(2) and its slope partial lnF(2)/partial ln(1/x) for “Frozen” and analytic strong-coupling constants,” Phys. Lett., Ser. B 679, 350 (2009); A. V. Kotikov, V. G. Krivokhizhin, and B. G. Shaikhatdenov, “Analytic and “Frozen” QCD coupling constants up to NNLO from DIS data,” Phys. Atom. Nucl. 75, 507 (2012); A. V. Kotikov and B. G. Shaikhatdenov, Q2-evolution of parton densities at small x values, Combined H1 and ZEUS F2 Data, arXiv:1212.4582[hep-ph].ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • A. V. Kotikov
    • 1
  • B. G. Shaikhatdenov
    • 1
  1. 1.Joint Institute for Nuclear ResearchDubnaRussia

Personalised recommendations