Physics of Particles and Nuclei

, Volume 44, Issue 2, pp 299–315 | Cite as

Finite unified theories and their predicitions

  • S. Heinemeyer
  • M. Mondragón
  • G. Zoupanos
Article

Abstract

All-loop Finite Unified Theories (FUTs) are very interesting N = 1 supersymmetric Grand Unified Theories (GUTs) realising an old field theory dream, and moreover have a remarkable predictive power due to the required reduction of couplings. The reduction of the dimensionless couplings in N = 1 GUTs is achieved by searching for renormalization group invariant (RGI) relations among them holding beyond the unification scale. Finiteness results from the fact that there exist RGI relations among dimensional couplings that guarantee the vanishing of all beta-functions in certain N = 1 GUTs even to all orders. Additional developments in the soft supersymmetry breaking sector of N = 1 GUTs and FUTs lead to exact RGI relations, i.e. reduction of couplings, in this dimensionful sector of the theory, too. Based on the above theoretical framework phenomenologically consistent FUTs have been constructed. Here we review two FUT models based on the SU(5) gauge group. Confronting their predictions with the top and bottom quark masses and other experimental constraints a light Higgs-boson mass in the range MH ∼ 121–126 GeV has been predicted, in striking agreement with the recent experimental results from ATLAS and CMS. Furthermore naturally a relatively heavy s-spectrum emerged with coloured supersymmetric particles above ∼1.5 TeV in agreement with the non-observation of those particles at the LHC. Restricting further the parameter space of the best version of the SU(5) FUT according to the reported accuracy of the Higgs boson mass and B-physics observables we find predictions for the rest of the Higgs masses and the s-spectrum.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Connes, M. R. Douglas, and A. S. Schwarz, JHEP 02, 003 (1998); [hep-th/9711162].MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    J. M. Maldacena, Adv. Theor. Math. Phys. 2, 231 (1998); [hep-th/9711200].MathSciNetADSMATHGoogle Scholar
  3. 3.
    S. Mandelstam, Nucl. Phys. B 213, 149 (1983).MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    L. Brink, O. Lindgren, and B. E. W. Nilsson, Phys. Lett. B 123, 323 (1983).ADSCrossRefGoogle Scholar
  5. 5.
    Z. Bern et al., Phys. Rev. Lett. 103, 081301 (2009); [0905.2326].ADSCrossRefGoogle Scholar
  6. 6.
    R. Kallosh, JHEP 09, 116 (2009); [0906.3495].MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    Z. Bern et al., Phys. Rev. Lett. 98, 161303 (2007); [hep-th/0702112].ADSCrossRefGoogle Scholar
  8. 8.
    Z. Bern, L. J. Dixon, and R. Roiban, Phys. Lett. B 644, 265 (2007); [hep-th/0611086].MathSciNetADSMATHCrossRefGoogle Scholar
  9. 9.
    M. B. Green, J. G. Russo, and P. Vanhove, Phys. Rev. Lett. 98, 131602 (2007); [hep-th/0611273].ADSCrossRefGoogle Scholar
  10. 10.
    J. C. Pati and A. Salam, Phys. Rev. Lett. 31, 661 (1973).ADSCrossRefGoogle Scholar
  11. 11.
    H. Georgi and S. L. Glashow, Phys. Rev. Lett. 32, 438 (1974).ADSCrossRefGoogle Scholar
  12. 12.
    H. Georgi, H. R. Quinn, and S. Weinberg, Phys. Rev. Lett. 33, 451 (1974).ADSCrossRefGoogle Scholar
  13. 13.
    H. Fritzsch and P. Minkowski, Ann. Phys. 93, 193 (1975).MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    H. Georgi, in Particles and Fields: Williamsburg 1974. AIP Conference Proceedings No. 23, Ed. by C. E. Carlson (American Institute of Physics, New York, 1974).Google Scholar
  15. 15.
    U. Amaldi, W. de Boer, and H. Furstenau, Phys. Lett. B 260, 447 (1991).ADSCrossRefGoogle Scholar
  16. 16.
    S. Dimopoulos and H. Georgi, Nucl. Phys. B 193, 150 (1981).ADSCrossRefGoogle Scholar
  17. 17.
    N. Sakai, Zeit. Phys. C 11, 153 (1981).ADSCrossRefGoogle Scholar
  18. 18.
    A. J. Buras et al., Nucl. Phys. 135, 66 (1978).ADSCrossRefGoogle Scholar
  19. 19.
    J. Kubo et al., Nucl. Phys. B 479, 25 (1996); [hep-ph/9512435].ADSCrossRefGoogle Scholar
  20. 20.
    J. Kubo, M. Mondragon, and G. Zoupanos, Acta Phys. Polon. B 27, 3911 (1997); [hep-ph/9703289].Google Scholar
  21. 21.
    T. Kobayashi et al., Acta Phys. Polon. B 30, 2013 (1999).ADSGoogle Scholar
  22. 22.
    P. Fayet, Nucl. Phys. B 149, 137 (1979).MathSciNetADSCrossRefGoogle Scholar
  23. 23.
    D. Kapetanakis, M. Mondragon, and G. Zoupanos, Z. Phys. C 60, 181 (1993); [hep-ph/9210218].ADSCrossRefGoogle Scholar
  24. 24.
    M. Mondragon and G. Zoupanos, Nucl. Phys. Proc. Suppl. C 37, 98 (1995).ADSCrossRefGoogle Scholar
  25. 25.
    J. Kubo, M. Mondragon, and G. Zoupanos, Nucl. Phys. B 424, 291 (1994).ADSCrossRefGoogle Scholar
  26. 26.
    J. Kubo et al., Phys. Lett. B 342, 155 (1995); [hep-th/9409003].ADSCrossRefGoogle Scholar
  27. 27.
    J. Kubo et al., Nucl. Phys. B 469, 3 (1996); [hep-ph/9512258].MathSciNetADSCrossRefGoogle Scholar
  28. 28.
    J. Kubo, M. Mondragon and G. Zoupanos, Phys. Lett. B 389, 523 (1996); [hep-ph/9609218].ADSCrossRefGoogle Scholar
  29. 29.
    W. Zimmermann, Commun. Math. Phys. 97, 211 (1985).ADSMATHCrossRefGoogle Scholar
  30. 30.
    R. Oehme and W. Zimmermann, Commun. Math. Phys. 97, 569 (1985).MathSciNetADSMATHCrossRefGoogle Scholar
  31. 31.
    E. Ma, Phys. Rev. D 17, 623 (1978).ADSCrossRefGoogle Scholar
  32. 32.
    E. Ma, Phys. Rev. D 31, 1143 (1985).ADSCrossRefGoogle Scholar
  33. 33.
    C. Lucchesi, O. Piguet, and K. Sibold, Phys. Lett. B 201, 241 (1988).MathSciNetADSCrossRefGoogle Scholar
  34. 34.
    C. Lucchesi, O. Piguet, and K. Sibold, Helv. Phys. Acta 61, 321 (1988).MathSciNetGoogle Scholar
  35. 35.
    C. Lucchesi and G. Zoupanos, Fortschr. Phys. 45, 129 (1997); [hep-ph/9604216].MathSciNetMATHCrossRefGoogle Scholar
  36. 36.
    A. V. Ermushev, D. I. Kazakov, and O. V. Tarasov, Nucl. Phys. B 281, 72 (1987).ADSCrossRefGoogle Scholar
  37. 37.
    D. I. Kazakov, Mod. Phys. Lett. A 2, 663 (1987).ADSCrossRefGoogle Scholar
  38. 38.
    B. Schrempp and F. Schrempp, Phys. Lett. B 299, 321 (1993).ADSCrossRefGoogle Scholar
  39. 39.
    B. Schrempp, Phys. Lett. B B344, 193 (1995); [hep-ph/9411241].ADSGoogle Scholar
  40. 40.
    B. Schrempp and M. Wimmer, Prog. Part. Nucl. Phys. 37, 1 (1996); [hep-ph/9606386].ADSCrossRefGoogle Scholar
  41. 41.
    I. Jack and D. R. T. Jones, Phys. Lett. B 349, 294 (1995); [hep-ph/9501395].MathSciNetADSCrossRefGoogle Scholar
  42. 42.
    J. Hisano and M. A. Shifman, Phys. Rev. D 56, 5475 (1997); [hep-ph/9705417].ADSCrossRefGoogle Scholar
  43. 43.
    I. Jack and D. R. T. Jones, Phys. Lett. B 415, 383 (1997); [hep-ph/9709364].MathSciNetADSCrossRefGoogle Scholar
  44. 44.
    L. V. Avdeev, D. I. Kazakov, and I. N. Kondrashuk, Nucl. Phys. B 510, 289 (1998); [hep-ph/9709397].MathSciNetADSMATHGoogle Scholar
  45. 45.
    D. I. Kazakov, Phys. Lett. B 449, 201 (1999); [hep-ph/9812513].ADSCrossRefGoogle Scholar
  46. 46.
    D.I. Kazakov, Phys. Lett. B 421, 211 (1998); [hep-ph/9709465].MathSciNetADSCrossRefGoogle Scholar
  47. 47.
    I. Jack, D. R. T. Jones, and A. Pickering, Phys. Lett. B 426, 73 (1998); [hep-ph/9712542].MathSciNetADSMATHCrossRefGoogle Scholar
  48. 48.
    T. Kobayashi, J. Kubo, and G. Zoupanos, Phys. Lett. B 427, 291 (1998); [hep-ph/9802267].ADSCrossRefGoogle Scholar
  49. 49.
    Y. Yamada, Phys. Rev. D 50, 3537 (1994); [hep-ph/9401241].ADSCrossRefGoogle Scholar
  50. 50.
    R. Delbourgo, Nuovo Cim. A 25, 646 (1975).ADSCrossRefGoogle Scholar
  51. 51.
    A. Salam and J. A. Strathdee, Nucl. Phys. B 86, 142 (1975).MathSciNetADSCrossRefGoogle Scholar
  52. 52.
    K. Fujikawa and W. Lang, Nucl. Phys. B 88, 61 (1975).ADSCrossRefGoogle Scholar
  53. 53.
    M. T. Grisaru, W. Siegel, and M. Rocek, Nucl. Phys. B 159, 429 (1979).MathSciNetADSCrossRefGoogle Scholar
  54. 54.
    L. Girardello and M. T. Grisaru, Nucl. Phys. B 194, 65 (1982).ADSCrossRefGoogle Scholar
  55. 55.
    D. R. T. Jones, L. Mezincescu, and Y. P. Yao, Phys. Lett. B 148, 317 (1984).ADSCrossRefGoogle Scholar
  56. 56.
    I. Jack and D. R. T. Jones, Phys. Lett. B 333, 372 (1994); [hep-ph/9405233].ADSCrossRefGoogle Scholar
  57. 57.
    L. E. Ibanez and D. Lust, Nucl. Phys. B 382, 305 (1992); [hep-th/9202046].MathSciNetADSCrossRefGoogle Scholar
  58. 58.
    V. S. Kaplunovsky and J. Louis, Phys. Lett. B 306, 269 (1993); [hep-th/9303040].ADSCrossRefGoogle Scholar
  59. 59.
    A. Brignole, L. E. Ibanez, and C. Munoz, Nucl. Phys. B 422, 125 (1994); [hep-ph/9308271].ADSCrossRefGoogle Scholar
  60. 60.
    J. A. Casas, A. Lleyda, and C. Munoz, Phys. Lett. B 380, 59 (1996); [hep-ph/9601357].MathSciNetADSCrossRefGoogle Scholar
  61. 61.
    Y. Kawamura, T. Kobayashi, and J. Kubo, Phys. Lett. B 405, 64 (1997); [hep-ph/9703320].ADSCrossRefGoogle Scholar
  62. 62.
    T. Kobayashi et al., Nucl. Phys. B 511, 45 (1998); [hep-ph/9707425].ADSCrossRefGoogle Scholar
  63. 63.
    V. A. Novikov et al., Nucl. Phys. B 229, 407 (1983).ADSCrossRefGoogle Scholar
  64. 64.
    V. A. Novikov et al., Phys. Lett. B 166, 329 (1986).ADSCrossRefGoogle Scholar
  65. 65.
    M. A. Shifman, Int. J. Mod. Phys. A 11, 5761 (1996); [hep-ph/9606281].ADSCrossRefGoogle Scholar
  66. 66.
    ATLAS Collaboration, G. Aad, et al., Phys. Lett. B (2012); [1207.7214].Google Scholar
  67. 67.
    CMS Collaboration, S. Chatrchyan, et al., Phys. Lett. B (2012); [1207.7235].Google Scholar
  68. 68.
    R. Oehme, Prog. Theor. Phys. Suppl. 86, 215 (1986).MathSciNetADSCrossRefGoogle Scholar
  69. 69.
    J. Kubo, K. Sibold, and W. Zimmermann, Nucl. Phys. B 259, 331 (1985).ADSCrossRefGoogle Scholar
  70. 70.
    J. Kubo, K. Sibold, and W. Zimmermann, Phys. Lett. B 220, 185 (1989).ADSCrossRefGoogle Scholar
  71. 71.
    O. Piguet and K. Sibold, Phys. Lett. B 229, 83 (1989).MathSciNetADSCrossRefGoogle Scholar
  72. 72.
    W. Zimmermann, Lect. Notes Phys. 539, 304 (2000).ADSCrossRefGoogle Scholar
  73. 73.
    J. Wess and B. Zumino, Phys. Lett. B 49, 52 (1974).ADSCrossRefGoogle Scholar
  74. 74.
    J. Iliopoulos and B. Zumino, Nucl. Phys. B 76, 310 (1974).ADSCrossRefGoogle Scholar
  75. 75.
    A. Parkes and P. C. West, Phys. Lett. B 138, 99 (1984).ADSCrossRefGoogle Scholar
  76. 76.
    S. Rajpoot and J. G. Taylor, Phys. Lett. B 147, 91 (1984).MathSciNetADSCrossRefGoogle Scholar
  77. 77.
    S. Rajpoot and J. G. Taylor, Int. J. Theor. Phys. 25, 117 (1986).MATHCrossRefGoogle Scholar
  78. 78.
    P. C. West, Phys. Lett. B 137, 371 (1984).ADSCrossRefGoogle Scholar
  79. 79.
    D. R. T. Jones and A. J. Parkes, Phys. Lett. B 160, 267 (1985).ADSCrossRefGoogle Scholar
  80. 80.
    D. R. T. Jones and L. Mezincescu, Phys. Lett. B 138, 293 (1984).ADSCrossRefGoogle Scholar
  81. 81.
    A. J. Parkes, Phys. Lett. B 156, 73 (1985).MathSciNetADSCrossRefGoogle Scholar
  82. 82.
    L. O’Raifeartaigh, Nucl. Phys. B 96, 331 (1975).MathSciNetADSCrossRefGoogle Scholar
  83. 83.
    P. Fayet and J. Iliopoulos, Phys. Lett. B 51, 461 (1974).ADSCrossRefGoogle Scholar
  84. 84.
    S. Ferrara and B. Zumino, Nucl. Phys. B 87, 207 (1975).ADSCrossRefGoogle Scholar
  85. 85.
    O. Piguet and K. Sibold, Nucl. Phys. B 196, 428 (1982).ADSCrossRefGoogle Scholar
  86. 86.
    O. Piguet and K. Sibold, Nucl. Phys. B 196, 447 (1982).ADSCrossRefGoogle Scholar
  87. 87.
    O. Piguet and K. Sibold, Int. J. Mod. Phys. A 1, 913 (1986).MathSciNetADSCrossRefGoogle Scholar
  88. 88.
    O. Piguet and K. Sibold, Phys. Lett. B 177, 373 (1986).MathSciNetADSCrossRefGoogle Scholar
  89. 89.
    P. Ensign and K. T. Mahanthappa, Phys. Rev. D 36, 3148 (1987).ADSCrossRefGoogle Scholar
  90. 90.
    O. Piguet, hep-th/9606045, in Proceedings of Talk given at 10th International Conference on Problems of Quantum Field Theory.Google Scholar
  91. 91.
    L. Alvarez-Gaume and P. H. Ginsparg, Nucl. Phys. B 243, 449 (1984).MathSciNetADSCrossRefGoogle Scholar
  92. 92.
    W. A. Bardeen and B. Zumino, Nucl. Phys. B 244, 421 (1984).MathSciNetADSCrossRefGoogle Scholar
  93. 93.
    B. Zumino, Y.-S. Wu, and A. Zee, Nucl. Phys. B 239, 477 (1984).MathSciNetADSCrossRefGoogle Scholar
  94. 94.
    R. G. Leigh and M. J. Strassler, Nucl. Phys. B 447, 95 (1995); [hep-th/9503121].MathSciNetADSMATHCrossRefGoogle Scholar
  95. 95.
    M. Mondragon and G. Zoupanos, Acta Phys. Polon. B 34, 5459 (2003).ADSGoogle Scholar
  96. 96.
    S. Hamidi, J. Patera, and J. H. Schwarz, Phys. Lett. B 141, 349 (1984).ADSCrossRefGoogle Scholar
  97. 97.
    X.-D. Jiang and X.-J. Zhou, Phys. Lett. B 216, 160 (1989).MathSciNetADSCrossRefGoogle Scholar
  98. 98.
    X.-D. Jiang and X.-J. Zhou, Phys. Lett. B 197, 156 (1987).ADSCrossRefGoogle Scholar
  99. 99.
    D. R. T. Jones and S. Raby, Phys. Lett. B 143, 137 (1984).ADSCrossRefGoogle Scholar
  100. 100.
    J. Leon et al., Phys. Lett. B 156, 66 (1985).MathSciNetADSCrossRefGoogle Scholar
  101. 101.
    D. I. Kazakov et al., Nucl. Phys. B 471, 389 (1996); [hep-ph/9511419].MathSciNetADSCrossRefGoogle Scholar
  102. 102.
    K. Yoshioka, Phys. Rev. D 61, 055008 (2000); [hep-ph/9705449].ADSCrossRefGoogle Scholar
  103. 103.
    S. Hamuli and J. H. Schwarz, Phys. Lett. B 147, 301 (1984).ADSCrossRefGoogle Scholar
  104. 104.
    K. S. Babu, T. Enkhbat and I. Gogoladze, Phys. Lett. B 555, 238 (2003); [hep-ph/0204246].ADSCrossRefGoogle Scholar
  105. 105.
    S. Heinemeyer, M. Mondragon, and G. Zoupanos, JHEP 07, 135 (2008); [0712.3630].ADSCrossRefGoogle Scholar
  106. 106.
    M. S. Carena et al., Nucl. Phys. B 577, 88 (2000); [hep-ph/9912516].ADSCrossRefGoogle Scholar
  107. 107.
    Particle Data Group, C. Amsler, et al., Phys. Lett. B 667, 1 (2008).ADSCrossRefGoogle Scholar
  108. 108.
    Tevatron Electroweak Working Group, 0903.2503, Tevatron Electroweak Working Group, arXiv:0903.2503 [hep-ex].Google Scholar
  109. 109.
    T. Kobayashi et al., Surveys High Energy Phys. 16, 87 (2001).ADSCrossRefGoogle Scholar
  110. 110.
    ALEPH, R. Barate, et al., Phys. Lett. B 429, 169 (1998).ADSCrossRefGoogle Scholar
  111. 111.
    CLEO, S. Chen, et al., Phys. Rev. Lett. 87, 251807 (2001); [hep-ex/0108032].ADSCrossRefGoogle Scholar
  112. 112.
    Belle, P. Koppenburg, et al., Phys. Rev. Lett. 93, 061803 (2004); [hep-ex/0403004].ADSCrossRefGoogle Scholar
  113. 113.
    LHCb Collaboration, R. Aaij, et al., Phys. Rev. Lett. 108, 231801 (2012); [1203.4493].CrossRefGoogle Scholar
  114. 114.
    S. Heinemeyer, W. Hollik, and G. Weiglein, Comput. Phys. Commun. 124, 76 (2000); [hep-ph/9812320].ADSMATHCrossRefGoogle Scholar
  115. 115.
    S. Heinemeyer, W. Hollik, and G. Weiglein, Eur. Phys. J. C 9, 343 (1999); [hep-ph/9812472].ADSGoogle Scholar
  116. 116.
    G. Degrassi et al., Eur. Phys. J. C 28, 133 (2003); [hep-ph/0212020].ADSCrossRefGoogle Scholar
  117. 117.
    M. Frank et al., JHEP 02, 047 (2007); [hep-ph/0611326].ADSCrossRefGoogle Scholar
  118. 118.
    CMS Collaboration, S. Chatrchyan, et al., Phys. Lett. B 713, 68 (2012); [1202.4083].ADSCrossRefGoogle Scholar
  119. 119.
    ATLAS Collaboration and P. Pravalorio, Talk at SUSY2012 (2012).Google Scholar
  120. 120.
    CMS Collaboration and C. Campagnari, Talk at SUSY2012 (2012).Google Scholar
  121. 121.
    M. Davier et al., 1010.4180.Google Scholar
  122. 122.
    T. Moroi, Phys. Rev. D 53, 6565 (1996); [hep-ph/9512396].ADSCrossRefGoogle Scholar
  123. 123.
    Muon G-2 Collaboration, G. Bennett, et al., Phys. Rev. D 73, 072003 (2006); [hep-ex/0602035].CrossRefGoogle Scholar
  124. 124.
    P. Dirac, Lectures on Quantum Field Theory (1964).Google Scholar
  125. 125.
    F. J. Dyson, Phys. Rev. 85, 631 (1952).MathSciNetADSMATHCrossRefGoogle Scholar
  126. 126.
    S. Weinberg, 0903.0568 and References Therein.Google Scholar
  127. 127.
    S. Heinemeyer, M. Mondragon and G. Zoupanos, SIGMA 6, 049 (2010); [1001.0428].MathSciNetGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • S. Heinemeyer
    • 1
  • M. Mondragón
    • 2
  • G. Zoupanos
    • 3
    • 4
  1. 1.Institute de Física de Cantabria (CSIC-UC)SantanderSpain
  2. 2.Institute de Física Universidad National Autónoma de MéxicoMéxicoMéxico
  3. 3.Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)MünchenGermany
  4. 4.Arnold-Sommerfeld-Center für Theoretische Physik Department fur PhysikLudwig-Maximilians-Universität MünchenMünchenGermany

Personalised recommendations