Advertisement

Physics of Particles and Nuclei

, Volume 43, Issue 5, pp 639–643 | Cite as

Wedge dislocations, three-dimensional gravity, and the Riemann-Hilbert problem

  • M. O. Katanaev
  • I. G. Mannanov
Article
  • 44 Downloads

Abstract

An expression for the free energy of an arbitrary static distribution of wedge dislocations in a solid is proposed. It represents a Euclidean version of (1+2)-dimensional gravity interacting with an arbitrary number of point particles. It is shown that the solution of the equilibrium equations leads to the Cauchy problem for effective equations determining the form of dislocations, while the problem of finding a metric leads to the Riemann-Hilbert problem for a frame with an \(\mathbb{O}(3)\) monodromy representation.

Keywords

Singular Point Ricci Tensor Point Particle Monodromy Matrix Effective Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. O. Katanaev and I. V. Volovich, Ann. Phys. (New York) 216, 1–28 (1992).MathSciNetADSzbMATHCrossRefGoogle Scholar
  2. 2.
    M. O. Katanaev, Theor. Math. Phys. 135, 733–744 (2003).MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    M. O. Katanaev, Theor. Math. Phys. 138, 163–176 (2004).MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    M. O. Katanaev, Phys.-Usp. 48, 675–701 (2005).ADSCrossRefGoogle Scholar
  5. 5.
    A. Bellini, M. Ciafaloni, and P. Valtancoli, Phys. Lett. B 357, 532–538 (1996).MathSciNetADSGoogle Scholar
  6. 6.
    A. Bellini, M. Ciafaloni, and P. Valtancoli, Nucl. Phys. B 454, 449–463 (1996).MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    P. Menotti and D. Seminara, Ann. Phys. (New York) 279, 282–310 (2000).MathSciNetADSzbMATHCrossRefGoogle Scholar
  8. 8.
    M. Welling, Classical Quantum Gravity 13, 653–679 (1996).MathSciNetADSzbMATHCrossRefGoogle Scholar
  9. 9.
    V. V. Golubev, Lectures on Analytical Theory of Differential Equations, 2nd ed. (Gos. Izd. Tekh.-Theor. Lit., Leningrad, 1950) [in Russian].Google Scholar
  10. 10.
    A. A. Bolibrukh, Fuchsian Differential Equations Holomorphic Bundles (Mosk. Tsentr Nepreryvnogo Mat. Obraz., Moscow, 2000) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  1. 1.Steklov Mathematical InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations