Advertisement

Physics of Particles and Nuclei

, Volume 43, Issue 2, pp 147–186 | Cite as

Mechanisms of sequential particle transfer and characteristics of light neutron-excess and oriented nuclei

  • L. I. GalaninaEmail author
  • N. S. Zelenskaya
Article

Abstract

The procedure for evaluating the second-order corrections to the matrix elements of the reaction A(x, y)B, which are obtained using the method of distorted waves with a finite radius of intercluster interaction (DWBAFR), is developed. It is based on the assumption of a virtual cluster structure of light nuclei and uses integral equations for a four-body problem in the Alt-Grassberger-Sandhas formalism. These corrections are related with the mechanisms of sequential particles transfer. The latter are represented by the quadrangle diagrams. Their matrix elements are summed up coherently with those given by the pole and triangle diagrams which were calculated by using DWBAFR. The computer code QUADRO is written for the numerical implementation of the method proposed. The statistical tensors of nucleus B formed in the reaction A(x, y)B at incident particle energies of about 10 MeV/nucleon in the center of mass frame are determined. Specific calculations allowed for description of both the experimental cross sections (0-rank statistical tensors) of various reactions (including those where nucleus B has some excess neutrons) and polarized characteristics of nucleus B* (in the case of the latter produced in the exited state). A two-neutron periphery of nuclei 6He, 10Be, 12B (both in dineutron and cigarlike configurations) is restored by analyzing the differential cross sections of elastic alpha-6He-scattering and 9Be(d, p)10Be and 10B(t, p)12B reactions. It is shown that the structure of neutron peripheries is fundamentally different for these nuclei and its feature depends on the way those neutron-excess nuclei are formed: in 6He both configurations contribute to a two-neutron halo, while in 10Be there is a barely noticeable one-neutron halo, and in 12B there is a “dineutron skin”. Orientation characteristics of nuclei B* are calculated. Their comparison with experimental data made it possible to draw important conclusions about a contribution to the statistical tensors of nucleus B* coming from the two-step mechanisms and its impact on the properties of oriented light nuclei, including their polarization. Finally, a simplified method for calculating the matrix elements of mechanisms, which take into account sequential particle transfer, is proposed. It is demonstrated to be correct by evaluating a contribution of the corresponding corrections to the total amplitude of the reaction.

Keywords

Differential Cross Section Spectroscopic Factor Step Mechanism Virtual Cluster Neutron Halo 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. G. Neudatchin and Yu. F. Smirnov, Nucleon Associations in Light Nuclei (Nauka, Moscow, 1969) [in Russian].Google Scholar
  2. 2.
    L. D. Faddeev, Mathematical Aspects of Three Body Problem in Quantum Scattering Theory (Daniel Davey, New York, 1965).zbMATHGoogle Scholar
  3. 3.
    N. Austern, R. M. Drisko, E. C. Halbert, and G. R. Satchler, “Theory of Finite-Range Distorted Waves Calculations,” Phys. Rev. B 133, 3–16 (1964).ADSCrossRefGoogle Scholar
  4. 4.
    N. S. Zelenskaya and I. B. Teplov, Exchange Processes in Nuclear Reactions (Mosk. Gos. Univ., Moscow, 1985) [in Russian].Google Scholar
  5. 5.
    O. A. Yakubovskii, “On the Integral Equations in the Theory of N Particle Scattering,” Sov. J. Nucl. Phys. 5, 937 (1967).Google Scholar
  6. 6.
    C. Lovelas, “Practical Theory of Three-Particle States. 1. Nonrelativistic,” Phys. Rev. B 135, 1225–1249 (1964).ADSCrossRefGoogle Scholar
  7. 7.
    P. Grassberger and W. Sandhas, “Systematical Treatment of the Non-Relativistic N-Particle Scattering Problem,” Nucl. Phys. B 2, 181–206 (1967).ADSCrossRefGoogle Scholar
  8. 8.
    S. Weinberg, “Systematical Solution of Multi-Particle Scattering Problems,” Phys. Rev. B 133, 232–256 (1964).MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    E. Shmid and Kh. Tsigel’man, in “Problem of Three-Body in Quantum Mechanics” (Nauka, Moscow, 1979), pp. 151–154 [in Russian].Google Scholar
  10. 10.
    E. O. Alt, P. Grassberger, and W. Sandhas, “Derivation of the DWBA in Exact Three-Body Theory,” Nucl. Phys. A 139, 209–229 (1969).ADSCrossRefGoogle Scholar
  11. 11.
    E. A. Edakova, V. G. Neudatchin, and E. A. Romanovskii, “Possible Manifestation of a Second-Order Process in Deuteron Inelastic Scattering by Nuclei,” Sov. Phys. JETP 11, 180 (1960).Google Scholar
  12. 12.
    I. Bang, N. S. Zelenskaya, E. Zh. Makzumov, et al., “Manifestation of Mechanisms Described by Qaudrangle Diagram in the (t,p) (3He,p) Reactions in Nuclei of 1p-Shell,” Sov. J. Nucl. Phys. 4, 688 (1966).Google Scholar
  13. 13.
    V. G. Neudatchin, N. S. Zelenskaya, E. G. Magsumov, et al., “Quadrangle Diagrams in the (p, p′), (d,d′), (t, p) − (3He, p) Reactions in Some Nuclei of p-Shell and Simple Method for Calculating Their Angular Distributions,” Phys. Lett. B 27, 490–493 (1968).ADSCrossRefGoogle Scholar
  14. 14.
    N. S. Zelenskaya, “Manifestation of Mechanisms, Described by Quadrangle Diagram in the Reactions with Heavy Ions Stripping (Pickup),” Sov. J. Nucl. Phys. 13, 417 (1971).Google Scholar
  15. 15.
    R. Middleton and D. J. Pullen, “A Study of Some (t, p) Reactions. Method and Results for 7Li, 10B and 11B,” Nucl. Phys. A 51, 50–62 (1964).CrossRefGoogle Scholar
  16. 16.
    J. H. Towle and B. E. F. Macefield, “A Study of 9Be(3He,n)11C Reaction,” Nucl. Phys. A 66, 65–79 (1965).CrossRefGoogle Scholar
  17. 17.
    M. C. Taylor and G. C. Phyllips, “A Study of the Reaction 9Be(3He,6Li) 6Li,” Nucl. Phys. A 126, 615–627 (1969).ADSCrossRefGoogle Scholar
  18. 18.
    J. Bang and S. A. Wollesen, “A Two-Step Process on Two-Particle Transfer Reactions,” Phys. Lett. D 33, 395–399 (1970).ADSCrossRefGoogle Scholar
  19. 19.
    N. B. de Tacassy, “On the Contribution from a Two-Step Mechanism, Involving the Sequential Transfer of Two Neutrons, to the Calculation of (t, p) Reaction Cross Sections,” Nucl. Phys. A 231, 243–256 (1974).ADSCrossRefGoogle Scholar
  20. 20.
    N. Hashimoto and M. Kawai, “The (p-d-t) Process in Strong (p, t) Transitions,” Phys. Lett. B 59, 243–256 (1975).ADSGoogle Scholar
  21. 21.
    R. L. Jaffe and W. J. Gerace, “Formfactors for Two-Nucleon Transfer Reactions,” Nucl. Phys. A 125, 1–27 (1969).ADSCrossRefGoogle Scholar
  22. 22.
    B. F. Bayman and A. Kallio, “Relative-Angular-Momentum-Zero Part of Two-Nucleon Wave Functions,” Phys. Rev. 156, 1121–1128 (1967).ADSCrossRefGoogle Scholar
  23. 23.
    P. J. Iano and W. T. Pinkston, “Aspects of Two-Nucleon Transfer Reactions,” Nucl. Phys. A 237, 189–214 (1975).ADSCrossRefGoogle Scholar
  24. 24.
    J. Bang and F. A. Gareev, “Wave Functions and Particle Transfer Formfactors of 42Ca and 18O,” Nucl. Phys. A 232, 45–57 (1974).ADSCrossRefGoogle Scholar
  25. 25.
    N. Austern, Direct Nuclear Reaction Theories (Wiley-Intersci., New York, 1970)).Google Scholar
  26. 26.
    W. R. Coker, T. Udagava, and H. H. Wolter, “Coupled-Reaction-Channels Study of (h, p) Reactions,” Phys. Rev. C 7, 1154–1165 (1973).ADSCrossRefGoogle Scholar
  27. 27.
    R. O. Nelson and N. R. Robertson, “The Evidence of Two-Step Process in the Spherical-Nuclei-Reactions,” Phys. Lett. B 43, 389–393 (1973).ADSGoogle Scholar
  28. 28.
    R. H. Ibarra, “Nuclear Overlaps in Two-Particle Transfer Reactions,” Nucl. Phys. A 211, 317–322 (1973).ADSCrossRefGoogle Scholar
  29. 29.
    R. H. Ibarra, M. Vallieres, and D. H. Fang, “Extended Basis Shell-Model Study of Two-Nucleon Transfer Reactions,” Nucl. Phys. A 256, 21–26 (1976).ADSCrossRefGoogle Scholar
  30. 30.
    N. S. Zelenskaya and I. B. Teplov, Properties of Excited Nuclear States and Angular Correlations in Nuclear Reactions (Energoatomizdat, Moscow, 1995) [in Russian].Google Scholar
  31. 31.
    L. I. Galanina and N. S. Zelenskaya, “Delayed Mechanism Accounting in Direct Nuclear Reactions on Nuclei of 1p-Shell,” Izv. Akad. Nauk, Ser. Fiz. 64, 496–499 (2000).Google Scholar
  32. 32.
    S. Sunakawa, Quantum Scattering Theory (Iwanami Shote, Tokyo, Japan, 1977; Mir, Moscow, 1979).Google Scholar
  33. 33.
    T. L. Belyaeva, P. N. Zaikin, N. S. Zelenskaya, A. M. Sokolov, and I. B. Teplov, OLYMP Calculation Program for Reaction Cross-Sections with Complex Particles by the Distorted-Wave Method with Finite Interaction Radius (Mosk. Gos. Univ., Moscow, 1981) [in Russian].Google Scholar
  34. 34.
    A. G. Sitenko, Theory of Nuclear Reactions (Energoatomizdat, Moscow, 1983) [in Russian].Google Scholar
  35. 35.
    A. N. Boyarkina, Structure of 1 p-Shell Nuclei (Mosk. Gos. Univ., Moscow, 1973) [in Russian].Google Scholar
  36. 36.
    L. I. Galanina and N. S. Zelenskaya, “Manifestations of a Dineutron Cluster in Elastic α6He Scattering,” Phys. At. Nucl. 65, 1282 (2002).CrossRefGoogle Scholar
  37. 37.
    R. Raabe, L. I. Galanina, N. S. Zelenskaya, et al., “2n-Transfer Contribution in the 4He(6He, 6He)4He Cross Section at E c.m. = 11.6 MeV,” Phys. Rev. C 67, 044602 (2003).ADSCrossRefGoogle Scholar
  38. 38.
    L. I. Galanina and N. S. Zelenskaya, “Mechanism of Independent Neutron Transfer in Elastic α6He Scattering and Structure of the 6He Nuclear Wave Function,” Phys. At. Nucl. 70, 283 (2007).CrossRefGoogle Scholar
  39. 39.
    R. Raabe, A. Piechaczek, A. Andreev, et al., “Elastic 2n-Transfer in the 4He(6He,6He)4He Scattering,” Phys. Lett. B 458, 1–7 (1999).ADSCrossRefGoogle Scholar
  40. 40.
    Yu. A. Penionzhkevich, “Nuclear Astrophysics,” Phys. At. Nucl. 73, 1460 (2010).CrossRefGoogle Scholar
  41. 41.
    M. Blann and M. B. Chadwick, “New Precompound Model: Angular Distributions,” Phys. Rev. C 57, 233–243 (1998).ADSCrossRefGoogle Scholar
  42. 42.
    A. J. Koning and J. P. Delaroche, “Global Potential,” Nucl. Phys. A 713, 231 (2003).ADSCrossRefGoogle Scholar
  43. 43.
  44. 44.
    V. M. Lebedev, N. V. Orlova, and A. V. Spasskii, “Multistep Processes in 9Be(d, pγ)10Be Reaction at E d = 12.5 MeV,” Phys. At. Nucl. 61, 1493 (1998).Google Scholar
  45. 45.
    N. S. Zelenskaya et al., “Correlation Features of the Reaction 9Be(d, pγ)10Be at E d = 15.3 MeV and Structure of the 10Be Nucleus,” Phys. At. Nucl. 64, 1909 (2001).CrossRefGoogle Scholar
  46. 46.
    L. I. Galanina et al., “Investigation of the 10B(d, pγ)11B Reaction Mechanism at E d = 15.3 MeV by the Method of Angular pγ Correlations,” Phys. At. Nucl. 68, 1957 (2005).CrossRefGoogle Scholar
  47. 47.
  48. 48.
    F. Ajsenberg-Selove, E. R. Flynn, and O. Hansen, “(t, p) Reaction on 4He, 6Li, 7Li, 9Be, 10B, 11B and 12C,” Phys. Rev. C 17, 516–521 (1978).CrossRefGoogle Scholar
  49. 49.
    L. I. Galanina and N. S. Zelenskaya, “The Role of Various Mechanisms in the Formation of the 12B Nucleus in the 10B(t, p)12B Reaction,” Izv. Akad. Nauk SSSR, Ser. Fiz. 72, 331–335 (2008).Google Scholar
  50. 50.
    A. A. Korsheninnikov, “Analysis of Three-Particle Decay Properties of Nuclei with A = 12 and 16 in K-Harmonics Method,” Sov. J. Nucl. Phys. 52, 827 (1990).Google Scholar
  51. 51.
    A. A. Korcheninnikov and T. Kobayashi, “Main Mechanisms in Fragmentation of Exotic Nucleus,” Nucl. Phys. A 567, 97–110 (1994).ADSCrossRefGoogle Scholar
  52. 52.
    A. A. Korcheninnikov, D. Yochida, D. A. Aleksandrov, et al., “Spectroscopy of 12Be and 13Be Using a 12Be Radioactive Beam,” Phys. Lett. B 343, 53–58 (1995).ADSCrossRefGoogle Scholar
  53. 53.
    A. A. Korcheninnikov, E. Yu. Nikolskii, T. Kobayashi, et al., “Spectroscopy of the Halo Nucleus 11Li by Experimental Study of 11Li + p Collisions,” Phys. Rev. C 53, 537–550 (1996).ADSCrossRefGoogle Scholar
  54. 54.
    M. G. Gornov, Yu. B. Gurov, and V. A. Pechkurov, “Excited States of 11Li,” Phys. Rev. Lett. 81, 4325–4328 (1998).ADSCrossRefGoogle Scholar
  55. 55.
    Yu. B. Gurov, S. V. Lapushkin, B. A. Chernyshov, and V. G. Sandunovskii, “Search for Superheavy Hydrogen Isotopes in Pion Absorption Reactions,” Phys. Part. Nucl. 40, 558 (2009).CrossRefGoogle Scholar
  56. 56.
    Yu. B. Gurov et al., “Spectroscopy of the 10Li Isotope in Stopped Pion Absorption Reactions on a 14C Radioactive Target,” Izv. Akad. Nauk, Ser. Fiz. 75, 495–498 (2011).Google Scholar
  57. 57.
    A. A. Korsheninnikov, “Nuclear Exotics near and above the Stability Boundary,” Doctoral Dissertation in Physics and Mathematics (Moscow, 1996).Google Scholar
  58. 58.
    V. I. Kukulin, V. M. Krasnopol’sky, V. T. Voronchev and P. V. Sazonov, “Detailed Study of the Cluster Structure of Light Nuclei in Three-Body Problem. (II). The Spectrum of Low-Lying States of Nuclei with A = 6,” Nucl. Phys. A 453, 365–388 (1986).ADSCrossRefGoogle Scholar
  59. 59.
    B. V. Danilin and M. V. Zhukov, “Resonance 3→3 Scattering and Structure of the Excited States of A = 6 Nuclei,” Phys. At. Nucl. 56, 460 (1993).Google Scholar
  60. 60.
    S. N. Ershov and B. V. Danilin, “Breakup Reactions of Two-Neutron-Halo Nuclei,” Phys. Part. Nucl. 39, 835 (2008).CrossRefGoogle Scholar
  61. 61.
    S. N. Ershov and B. V. Danilin, “Excitation of Two-Neutron-Halo Nuclei in a Continuum,” Phys. At. Nucl. 72, 1704 (2009).CrossRefGoogle Scholar
  62. 62.
    E. T. Ibraeva, M. A. Zhusupov, and O. Imambekov, “Structure of Light Neutron-Rich Nuclei and Mechanism of Elastic Proton Scattering,” Phys. At. Nucl. 74, 1595 (2011).CrossRefGoogle Scholar
  63. 63.
    V. P. Zavarzina, E. S. Konobeevskii, and A. V. Stepanov, “The Role of Configurations of Neutron Halo in the Formation of the Model Vertex Function for Description of the Two-Neutron Transfer Reaction,” Izv. Akad. Nauk, Ser. Fiz., No. 3, 845–856 (2008).Google Scholar
  64. 64.
    G. E. Belovitskii et al., “Quasifree Proton Scattering on Halo Nuclei as a Tool for Studying the Neutron-Halo Structure,” Phys. At. Nucl. 72, 1714 (2009).CrossRefGoogle Scholar
  65. 65.
    L. I. Galanina and N. S. Zelenskaya, “Neutron Periphery in Light Nuclei,” Phys. At. Nucl. 72, 1695 (2009).CrossRefGoogle Scholar
  66. 66.
  67. 67.
    G. M. Ter-Akopian, A. M. Rodin, A. S. Fomichev, et al., “Two-Neutron Exchange Observed in the 6He+6He Reaction Search for the “Di-Neutron” Configuration of 6He,” Phys. Lett. B 426, 251–256 (1998).ADSCrossRefGoogle Scholar
  68. 68.
    FergyussonGoogle Scholar
  69. 69.
    L. I. Galanina and N. S. Zelenskaya, “Statistical Tensors of Complex Systems,” Izv. Akad. Nauk, Ser. Fiz. 70, 1627–1632 (2006).Google Scholar
  70. 70.
    L. S. Bidenharn and M. E. Rose, “Theory of Angular Correlation of Nuclear Radiations,” Rev. Mod. Phys. 25, 729–777 (1953).ADSCrossRefGoogle Scholar
  71. 71.
    K. Blum, Density Matrix Theory and Applications (Physics of Atoms and Molecules) (Springer, New York, 1996; Fizmatlit, Moscow, 1959).Google Scholar
  72. 72.
    L. I. Galanina and N. S. Zelenskaya, “Calculation of the Properties of Binary Nuclear Reactions with consideration of the Spin-Orbit Interaction,” Izv. Akad. Nauk, Ser. Fiz. 64, 954–959 (2000).Google Scholar
  73. 73.
    L. I. Galanina et al., “Investigation of the 13C(d, α)11B Reaction Mechanism at E d = 15.3 MeV,” Bull. Russ. Acad. Sci., Phys. 73, 806–809 (2009).CrossRefGoogle Scholar
  74. 74.
    L. I. Galanina et al., “Study of Orientation Characteristics of 11B(5/2, 4.445 MeV) Nucleus the in 13C(d, αγ)11B Reaction at E d = 15.3 MeV,” Bull. Russ. Acad. Sci., Phys. 74, 447 (2010).CrossRefGoogle Scholar
  75. 75.
    W. Hauser and H. Feschbach, Phys. Rev. 87, 336 (1952).ADSCrossRefGoogle Scholar
  76. 76.
    H. Feschbach and V. I. Weisskopf, Phys. Rev. 76, 1550 (1949).ADSCrossRefGoogle Scholar
  77. 77.
    T. L. Belyaeva, N. S. Zelenskaya, and N. V. Odintsov, “Computation of Correlation Characteristics of Nuclear Reactions Induced by Semi-Heavy Ions,” Comp. Phys. Commun. 73, 161–169 (1992).ADSCrossRefGoogle Scholar
  78. 78.
    S. V. Perrey and F. G. Perrey, Atom. Data Nucl. Data Tables 17, 1-1–1 (1976).ADSCrossRefGoogle Scholar
  79. 79.
    O. I. Vasil’eva et al., “Determination of the Spin-Tensor Components of Density Matrix for 4.43 MeV(2+) State of 12C Nucleus in (3He, αγ) Reaction,” Izv. Akad. Nauk SSSR, Ser. Fiz. 48, 1959–1964 (1984).Google Scholar
  80. 80.
    V. M. Lebedev, N. V. Orlova, and A. V. Spasskii, “Determination of the Deformation of the 12C Nucleus from Angular Correlations in the 11B(α, tγ)12C and 13C(3He, αγ)12C Reactions,” Phys. At. Nucl. 62, 1455 (1999).Google Scholar
  81. 81.
    L. I. Galanina and N. S. Zelenskaya, “Role of Various Mechanisms in the Formation of a 12C Nucleus in the 13C(3He, α)12C Reaction,” Phys. At. Nucl. 70, 848 (2007).CrossRefGoogle Scholar
  82. 82.
    N. S. Zelenskaya et al., “General Features of Multi-Nucleon Transfer Reaction on Nuclei of 1p Shell,” Sov. J. Nucl. Phys. 6, 47 (1967).Google Scholar
  83. 83.
    L. I. Galanina and N. S. Zelenskaya, “Simplified Method to Calculate Amplitudes of Delay-Involving Mechanisms,” Izv. Akad. Nauk, Ser. Fiz. 69, 1741–1745 (2005).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  1. 1.Skobeltsyn Institute of Nuclear PhysicsMoscow State UniversityMoscowRussia

Personalised recommendations