Advertisement

Physics of Particles and Nuclei

, Volume 41, Issue 6, pp 835–843 | Cite as

Catalysis of black holes/wormholes formation in high energy collisions

  • I. Ya. Aref’eva
Plenary Session

Abstract

The current paradigm suggests that BH/WH formation in particles collisions will happen when a center-mass energy of colliding particles is sufficiently above the Planck scale (the transplanckian region). We confirm the classical geometrical cross section of the BH production reconsidering the process of two transplanckian particles collision in the rest frame of one of incident particles. This consideration permits to use the standard Thorne’s hoop conjecture for a matter compressed into a region to prove a variant of the conjecture dealing with a total amount of compressed energy in the case of colliding particles. We briefly mention that the process of BH formation is catalyzed by the negative cosmological constant and by a particular scalar matter, namely dilaton, while it is relaxed by the positive cosmological constant and at a critical value just turns off.

Keywords

Black Hole Shock Wave Rest Frame Trap Surface Black Hole Formation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. Arkani-Hamed, S. Dimopoulos, and G. Dvali, Phys. Lett. B 429, 263 (1998); I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos, and G. R. Dvali, Phys. Lett. B 436, 257 (1998).CrossRefADSGoogle Scholar
  2. 2.
    G. ’t Hooft, Phys. Lett. B 198, 61 (1987).CrossRefADSGoogle Scholar
  3. 3.
    D. Amati, M. Ciafaloni, and G. Veneziano, Phys. Lett. B 197, 81 (1987); Int. J. Mod. Phys. A 3, 1615 (1988).CrossRefADSGoogle Scholar
  4. 4.
    D. J. Gross and P. F. Mende, Phys. Lett. B 197, 129 (1987).CrossRefMathSciNetADSGoogle Scholar
  5. 5.
    M. Soldate, Phys. Lett. B 186, 321 (1987); I. J. Muzinich and M. Soldate, Phys. Rev. D 37, 359 (1988).CrossRefADSGoogle Scholar
  6. 6.
    D. Amati, M. Ciafaloni, and G. Veneziano, Phys. Lett. B 216, 41 (1989); Nucl. Phys. B 347, 550 (1990); Nucl. Phys. B 403, 707 (1993).CrossRefADSGoogle Scholar
  7. 7.
    I. Y. Aref’eva, K. S. Viswanathan, and I. V. Volovich, Nucl. Phys. B 452, 346 (1995), hep-th/9412157; I. Y. Aref’eva, K. S. Viswanathan, and I. V. Volovich, Int. J. Mod. Phys. D 5, 707 (1996).zbMATHCrossRefMathSciNetADSGoogle Scholar
  8. 8.
    V. A. Rubakov and M. E. Shaposhnikov, Phys. Lett. B 125, 136 (1983).CrossRefADSGoogle Scholar
  9. 9.
    T. Banks and W. Fischler, hep-th/9906038Google Scholar
  10. 10.
    I. Ya. Aref’eva, Part. Nucl. 31, 169 (2000).Google Scholar
  11. 11.
    S. Dimopoulos and G. Landsberg, Phys. Rev. Lett. 87, 161602 (2001).CrossRefADSGoogle Scholar
  12. 12.
    P. C. Argyres, S. Dimopoulos, and J. March-Russell, Phys. Lett. B 441, 96 (1998).CrossRefMathSciNetADSGoogle Scholar
  13. 13.
    S. B. Giddings and S. Thomas, Phys. Rev. D 65, 056010 (2002).CrossRefADSGoogle Scholar
  14. 14.
    I. Y. Aref’eva and I. V. Volovich, Int. J. Geom. Meth. Mod. Phys. 05, 641 (2008).CrossRefMathSciNetGoogle Scholar
  15. 15.
    A. Mironov, A. Morozov, and T. N. Tomaras, arXiv:0710.3395Google Scholar
  16. 16.
    P. Nicolini and E. Spallucci, arXiv:0902.4654.Google Scholar
  17. 17.
    R. Penrose, unpublished (1974).Google Scholar
  18. 18.
    D. M. Eardley and S. B. Giddings, Phys. Rev. D 66, 044011 (2002).CrossRefMathSciNetADSGoogle Scholar
  19. 19.
    J. Pumplin, D. R. Stump, J. Huston, H. L. Lai, P. Nadolsky and W. K. Tung, J. High Energy Phys. 0207, 012 (2002).CrossRefADSGoogle Scholar
  20. 20.
    D. M. Gingrich, Int. J. Mod. Phys. A 22, 5685 (2008), arXiv:0706.0627 [hep-ph].CrossRefADSGoogle Scholar
  21. 21.
    C. Amsler et al. (Particle Data Group), Phys. Lett. B 667, 1 (2008).CrossRefADSGoogle Scholar
  22. 22.
    V. M. Abazov et al., Phys. Rev. Lett. 102, 051601 (2009); V. M. Abazov et al., Phys. Rev. Lett. 103, 191803 (2009).CrossRefADSGoogle Scholar
  23. 23.
    G. Landsberg, arXiv:0808.1867 [hep-ex].Google Scholar
  24. 24.
    S. W. Hawking, Commun. Math. Phys. 43, 199 (1975).CrossRefMathSciNetADSGoogle Scholar
  25. 25.
    G. Dvali and S. Sibiryakov, J. High Energy Phys. 0803, 007 (2008).CrossRefADSGoogle Scholar
  26. 26.
    P. Meade and L. Randall, arXiv:0708.3017.Google Scholar
  27. 27.
    H. Yoshino and R. B. Mann, Phys. Rev. D 74, 044003 (2006).CrossRefMathSciNetADSGoogle Scholar
  28. 28.
    I. Ya. Aref’eva, arXiv:0912.5481.Google Scholar
  29. 29.
    I. Y. Aref’eva, A. A. Bagrov, and E. A. Guseva, JEPH, 1130709, (2009); I. Y. Aref’eva and A. A. Bagrov, Theor. Math. Phys. 161, 382 (2009).Google Scholar
  30. 30.
    I. Y. Aref’eva, A. A. Bagrov and L. V. Joukovskaya, arXiv:0909.1294.Google Scholar
  31. 31.
    H. Yoshino and V. S. Rychkov, Phys. Rev. D 71, 104028 (2005).CrossRefADSGoogle Scholar
  32. 32.
    M. W. Choptuik and F. Pretorius, arXiv:0908.1780.Google Scholar
  33. 33.
    E. Kohlprath and G. Veneziano, J. High Energy Phys. 0206, 057 (2002).CrossRefMathSciNetADSGoogle Scholar
  34. 34.
    S. B. Giddings and V. S. Rychkov, Phys. Rev. D 70, 104026 (2004).CrossRefMathSciNetADSGoogle Scholar
  35. 35.
    H. Yoshino, A. Zeinikov, and V. P. Frolov, gr-qc/0703127.Google Scholar
  36. 36.
    N. N. Bogolyubov and D. V. Shirkov, Introduction to the Theory of Quantized Fields (Interscience, New York, 1959).zbMATHGoogle Scholar
  37. 37.
    N. N. Bogolyubov, A. A. Logunov, A. I. Oksak, and I. T. Todorov, General Principles of Quantum Field Theory (Kluwer Acad., Dordrecht, 1990).zbMATHGoogle Scholar
  38. 38.
    I. Y. Aref’eva, B. Dragovich, P. H. Frampton, and I. V. Volovich, Int. J. Mod. Phys. A 6, 4341 (1991).zbMATHCrossRefMathSciNetADSGoogle Scholar
  39. 39.
    S. B. Giddings, arXiv:0911.3395.Google Scholar
  40. 40.
    I. Y. Aref’eva, L. D. Faddeev, and A. A. Slavnov, Theor. Math. Phys. 21, 1165 (1975).CrossRefGoogle Scholar
  41. 41.
    S. W. Hawking and G. R. F. Ellis, The Large Scale Structure of Space-Time (Cambridge Univ., Cambridge, 1973).zbMATHCrossRefGoogle Scholar
  42. 42.
    R. M. Wald, General Relativity (Univ. of Chicago, Chicago, 1984).zbMATHGoogle Scholar
  43. 43.
    G.’ t Hooft, Commun. Math. Phys. 117, 685 (1988).zbMATHCrossRefADSGoogle Scholar
  44. 44.
    R. C. Tolman, Phys. Rev. 55, 364 (1939).zbMATHCrossRefADSGoogle Scholar
  45. 45.
    P. S. Florides, Proc. R. Soc. London A 337, 529 (1974).CrossRefMathSciNetADSGoogle Scholar
  46. 46.
    M. Colpi, S. L. Shapiro, and I. Wasserman, Phys. Rev. Lett. 57, 2485 (1986).CrossRefMathSciNetADSGoogle Scholar
  47. 47.
    F. E. Schunck and E. W. Mielke, Class. Quantum. Grav. 20, R301 (2003).zbMATHCrossRefMathSciNetADSGoogle Scholar
  48. 48.
    P. C. Aichelburg and R. U. Sexl, Gen. Rel. Grav. 2, 303 (1971).CrossRefADSGoogle Scholar
  49. 49.
    T. Dray and G.’ t Hooft, Nucl. Phys. B 253, 173 (1985); Class. Quantum. Grav. 3, 825 (1986).CrossRefADSGoogle Scholar
  50. 50.
    P. D. D’Eath and P. N. Payne, Phys. Rev. D 46, 658 (1992); Phys. Rev. D 46, 675 (1992); Phys. Rev. D 46, 694 (1992).CrossRefMathSciNetADSGoogle Scholar
  51. 51.
    V. S. Rychkov, Phys. Rev. D 70, 044003 (2004).CrossRefMathSciNetADSGoogle Scholar
  52. 52.
    S. B. Giddings and V. S. Rychkov, hep-th/0409131.Google Scholar
  53. 53.
    K. S. Thorne, “Nonspherical Gravitational Collapse, A Short Review”, in Magic without Magic, Ed. by J. Klauder (Freeman, San Francisco, 1972).Google Scholar
  54. 54.
    G.’ t Hooft, Phys. Lett. B 198, 61 (1987); G.’ t Hooft, Nucl. Phys. B 304, 867 (1988).CrossRefADSGoogle Scholar
  55. 55.
    S. B. Giddings and R. A. Porto, “The Gravitational S-Matrix,” 0908.0004Google Scholar
  56. 56.
    N. Kaloper and J. Terning, Gen. Rel. Grav. 39, 1525 (2007).zbMATHCrossRefMathSciNetADSGoogle Scholar
  57. 57.
    V. Ferrari, P. Pendenza, and G. Veneziano, Gen. Rel. Grav. 20, 1185 (1988).zbMATHCrossRefMathSciNetADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • I. Ya. Aref’eva
    • 1
  1. 1.Steklov Mathematical InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations