Advertisement

Physics of Particles and Nuclei

, Volume 41, Issue 2, pp 175–229 | Cite as

Quantum statistical effects in nuclear reactions, fission, and open quantum systems

  • V. V. Sargsyan
  • Z. Kanokov
  • G. G. AdamianEmail author
  • N. V. Antonenko
Article

Abstract

Quantum diffusion equations with time-dependent transport coefficients are derived from generalized non-Markovian Langevin equations. Generalized fluctuation-dissipation relations and analytical formulas for calculating friction and diffusion coefficients in nuclear processes are obtained. The asymptotics of the transport coefficients and of the correlation functions are investigated. The problem of correlation decay in quantum dissipative systems is studied. A comparative analysis of diffusion coefficients for the harmonic and inverted oscillators is performed. The role of quantum statistical effects during passage through a parabolic potential barrier is investigated. Sets of diffusion coefficient assuring the purity of states at any time instant are found in cases of non-Markovian dynamics. The influence of different sets of transport coefficients on the rate of decay from a metastable state is studied in the framework of the master equation for reduced density matrices describing open quantum systems. The approach developed is applied to investigation of fission processes and the processes of projectile-nuclei capture by target nuclei for bombarding energies in the vicinity of the Coulomb barrier. The influence of dissipation and fluctuation on these processes is taken into account in a self-consistent way. The evaporation residue cross sections for asymmetric fusion reactions are calculated from the derived capture probabilities averaged over all orientations of the deformed projectile and target nuclei.

Keywords

Capture Probability Transport Coefficient Heat Bath Coulomb Barrier Fusion Cross Section 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. N. Bogolyubov, Selected Works in 3 vols. (Nauk. Dumka, Kiev, 1971) [in Russian].Google Scholar
  2. 2.
    A. A. Belavin et al., Zh. Eksp. Teor. Fiz. 56, 264 (1969) [Sov. Phys. JETP 29, 145 (1969)].Google Scholar
  3. 3.
    A. O. Caldeira and A. J. Leggett, Phys. A 121, 587 (1983); Ann. Phys. 149, 374 (1983); Phys. Rev. Lett. 46, 211 (1981); Phys. Rev. Lett. 48, 1571 (1982).zbMATHMathSciNetGoogle Scholar
  4. 4.
    N. G. van Kampen, Stochastic Processes in Physics and Chemistry (North-Holland, Amsterdam, 1981).zbMATHGoogle Scholar
  5. 5.
    C. W. Gardiner, Quantum Noise (Springer, Berlin, 1991).zbMATHGoogle Scholar
  6. 6.
    H. J. Carmichael, An Open System Approach to Quantum Optics (Springer, Berlin, 1993).Google Scholar
  7. 7.
    Yu. L. Klimontovich, Statistical Theory of Open Systems (Kluwer, Dordrecht, 1995).zbMATHGoogle Scholar
  8. 8.
    D. Zubarev, V. Morozov, and G. Röpke, Statistical Mechanics of Nonequilibrium Processes (Akademie Verlag, Berlin, 1997).zbMATHGoogle Scholar
  9. 9.
    U. Weiss, Quantum Dissipative Systems (World Sci., Singapore, 1999).zbMATHGoogle Scholar
  10. 10.
    G. W. Ford, J. T. Lewis, and R. F. O’Connell, Phys. Rev. A 37, 4419 (1988).MathSciNetADSGoogle Scholar
  11. 11.
    K. Lindenberg and B. West, Phys. Rev. A 30, 568 (1984).MathSciNetADSGoogle Scholar
  12. 12.
    V. V. Dodonov, O. V. Man’ko, and V. I. Man’ko, J. Russ. Laser Res. 16, 1 (1995); V. V. Dodonov and V. I. Man’ko, Proc. Lebedev Phys. Inst. of Sci. (Nova Science, Commack, New York, 1987), Vol. 167.Google Scholar
  13. 13.
    H. Grabert, P. Schramm, and G.-L. Ingold, Phys. Rep. 168, 115 (1988); P. Talkner, Ann. Phys. (N.Y.) 167, 390 (1986).MathSciNetADSGoogle Scholar
  14. 14.
    G. G. Adamian, N. V. Antonenko, and W. Scheid, Phys. Lett. A 244, 482 (1998); Phys. Lett. A 260, 39 (1999); Yu. V. Palchikov et al., J. Phys. A 33, 4265 (2000); Physica A 316, 297 (2002).ADSGoogle Scholar
  15. 15.
    V. V. Volkov, Phys. Rep. 44, 93 (1978).ADSGoogle Scholar
  16. 16.
    R. Bass, Nuclear Reactions with Heavy Ions (Springer, Berlin, 1980).Google Scholar
  17. 17.
    W. Nörenberg, in Heavy Ion Collisions, Ed. by R. Bock (North-Holland, Amsterdam, 1980), vol. 2, p. 1.Google Scholar
  18. 18.
    R. V. Dzholos and R. Shmidt, Fiz. Elem. Chastits At. Yadra 12, 324 (1981) [Sov. J. Nucl. Phys. 12, 129 (1981)]; R. Schmidt, V. D. Toneev, and G. Wolschin, Nucl. Phys. A 311, 247 (1978); R. Shmidt and V. D. Toneev, Yad. Fiz. 30, 112 (1979) [Sov. J. Nucl. Phys. 30, 57 (1979)].Google Scholar
  19. 19.
    W. U. Schröder and J. R. Huizenga, Treatise on HeavyIon Science, Ed. by D. A. Bromley (Plenum, New York, 1984), Vol. 2, p. 115.Google Scholar
  20. 20.
    D. H. E. Gross and H. Kalinowski, Phys. Rep. 45, 175 (1978).ADSGoogle Scholar
  21. 21.
    H. Freiesleben and J. V. Kratz, Phys. Rep 106, 1 (1984).ADSGoogle Scholar
  22. 22.
    P. Fröbrich, Phys. Rep. 116, 337 (1984).ADSGoogle Scholar
  23. 23.
    J. A. Maruhn, W. Greiner, and W. Scheid, Heavy Ion Collisions, Ed. by R. Bock (North-Holland, Amsterdam, 1980), vol. 2, p. 397.Google Scholar
  24. 24.
    H. A. Weidenmüller, Progr. Part. Nucl. Phys. (Ed. by D. Wilkinson) 3, 49 (1980).Google Scholar
  25. 25.
    N. V. Antonenko, R. V. Jolos, G. G. Adamyan, and A. K. Nasirov, Fiz. Elem. Chastits At. Yadra 25, 1379 (1994) [Phys. Part. Nucl. 25, 583 (1994)].Google Scholar
  26. 26.
    G. D. Adeev et al., Fiz. Elem. Chastits At. Yadra 19, 1229 (1988) [Sov. J. Part. Nucl. 19, 529 (1988)]; G. D. Adeev, Fiz. Elem. Chastits At. Yadra 23, 1572 (1992) [Sov. J. Part. Nucl. 23, 684 (1992)].Google Scholar
  27. 27.
    I. I. Gonchar, Fiz. Elem. Chastits At. Yadra 26, 932 (1995) [Phys. Part. Nucl. 26, 394 (1995)].Google Scholar
  28. 28.
    V. V. Volkov, Fiz. Elem. Chastits At. Yadra 35, 797 (2004) [Phys. Part. Nucl. 35, 425 (2004)].Google Scholar
  29. 29.
    G. G. Adamian, N. V. Antonenko, and W. Scheid, Phys. Rev. C 68, 034601 (2003).ADSGoogle Scholar
  30. 30.
    G. G. Adamian et al., Phys. Rev. C 56, 373 (1997).ADSGoogle Scholar
  31. 31.
    G. G. Adamian, N. V. Antonenko, and W. Scheid, Nucl. Phys. A 645, 376 (1999).ADSGoogle Scholar
  32. 32.
    G. D. Adeev et al., Fiz. Elem. Chastits At. Yadra 36, 731 (2005) [Phys. Part. Nucl. 36, 378 (2005)].Google Scholar
  33. 33.
    V. V. Volkov, Nuclear Reactions of Deep Inelastic Transfer (Energoizdat, Moscow, 1982) [in Russian].Google Scholar
  34. 34.
    M. G. Itkis et al., Fiz. Elem. Chastits At. Yadra 19, 701 (1988) [Sov. J. Part. Nucl. 19, 301 (1988)]; M. G. Itkis and A. Ya. Rusanov, Fiz. Elem. Chastits At. Yadra 29, 389 (1998) [Sov. J. Part. Nucl. 29, 160 (1998)].Google Scholar
  35. 35.
    J. O. Newton, Fiz. Elem. Chastits At. Yadra 21, 821 (1990) [Sov. J. Part. Nucl. 21, 349 (1990)].Google Scholar
  36. 36.
    S. T. Belyaev and V. G. Zelevinskii, Usp. Fiz. Nauk 147, 210 (1985) [Sov. Phys. Usp. 28, 854 (1985)].Google Scholar
  37. 37.
    P. Grange, H. C. Pauli, and H. A. Weidenmüller, Phys. Lett. B 88, 9 (1979).ADSGoogle Scholar
  38. 38.
    P. Grange, H. C. Pauli, and H. A. Weidenmüller, Z. Phys. A 296, 107 (1980).MathSciNetADSGoogle Scholar
  39. 39.
    G. D. Adeev and I. I. Gonchar, Yad. Fiz. 37, 1113 (1983) [Sov. J. Nucl. Phys. 37, 661 (1983)].Google Scholar
  40. 40.
    G. D. Adeev and I. I. Gonchar, Yad. Fiz. 40, 869 (1984) [Sov. J. Nucl. Phys. 40, 553 (1984)].Google Scholar
  41. 41.
    G. D. Adeev et al., Yad. Fiz. 43, 1137 (1986) [Sov. J. Nucl. Phys. 43, 727 (1986)].Google Scholar
  42. 42.
    G. Wegmann, Phys. Lett. B 50, 327 (1974).ADSGoogle Scholar
  43. 43.
    J. J. Griffin and M. Dworzecka, Nucl. Phys. A 455, 61 (1986).ADSGoogle Scholar
  44. 44.
    J. R. Nix and A. J. Sierk, in Proc. of the Intern. School-Seminar on Heavy Ion Physics, Dubna, JINR, 1980, D7-87-68 (Dubna, 1987), p. 453.Google Scholar
  45. 45.
    K. Pomorski and H. Hofmann, Phys. Lett. B 263, 164 (1991).ADSGoogle Scholar
  46. 46.
    B. W. Bush, G. F. Bertsch, and B. A. Brown, Phys. Rev. C 45, 1709 (1992).ADSGoogle Scholar
  47. 47.
    K. T. R. Davies, A. J. Sierk, and J. R. Nix, Phys. Rev. C 13, 2385 (1976).ADSGoogle Scholar
  48. 48.
    Yu. A. Lazarev, At. En. Rev. 15, 75 (1977).Google Scholar
  49. 49.
    S. M. Luk’yanov et al., in Proc. of the Intern. School-Seminar on Heavy Ion Physics, Dubna, 1989 D7-90-142 (OIYaI, Dubna, 1990), p. 225.Google Scholar
  50. 50.
    S. V. Zhdanov et al., Yad. Fiz. 55, 3169 (1992) [Sov. J. Nucl. Phys. 55, 1766 (1992)]; Yad. Fiz. 56, 55 (1993) [Sov. J. Nucl. Phys. 56, 175 (1993)].Google Scholar
  51. 51.
    F. Scheuter et al., Phys. Lett. B 149, 303 (1984).ADSGoogle Scholar
  52. 52.
    G. R. Tillack, Phys. Lett. B 278, 403 (1992); G. R. Tillack et al., Phys. Lett. B 296, 296 (1992).ADSGoogle Scholar
  53. 53.
    J. R. Nix, Nucl. Phys. A 130, 241 (1969).ADSGoogle Scholar
  54. 54.
    T. Wada, Y. Abe, and N. Carjan, Phys. Rev. Lett. 70, 3538 (1993).ADSGoogle Scholar
  55. 55.
    G. I. Kosenko et al., Yad. Fiz. 55, 920 (1992) [Sov. J. Nucl. Phys. 55, 514 (1992)].Google Scholar
  56. 56.
    H. Schultheis and R. Schultheis, Phys. Rev. C 18, 1317 (1978); Phys. Rev. C 20, 403 (1979).ADSGoogle Scholar
  57. 57.
    P. Grange and H. A. Weidenmüller, Phys. Lett. B 96, 26 (1980); P. Grange, Li-Jang Qing, and H. A. Weidenmüller, Phys. Rev. C 27, 2063 (1983).ADSGoogle Scholar
  58. 58.
    S. Hassani and P. Grange, Phys. Lett. B 137, 281 (1984); Z. Phys. A 325, 95 (1986).ADSGoogle Scholar
  59. 59.
    K. H. Bhatt, P. Grange, and B. Hiller, Phys. Rev. C 33, 954 (1986).ADSGoogle Scholar
  60. 60.
    P. Grange et al., Phys. Rev. C 34, 209 (1986).ADSGoogle Scholar
  61. 61.
    E. G. Lanza and H. A. Weidenmüller, Z. Phys. A 323, 157 (1986).ADSGoogle Scholar
  62. 62.
    D. Cha and G. F. Bertsch, Phys. Rev. C 46, 306 (1992).ADSGoogle Scholar
  63. 63.
    W. P. Zank et al., Phys. Rev. C 33, 519 (1986).ADSGoogle Scholar
  64. 64.
    D. J. Hinde et al., Nucl. Phys. A 452, 550 (1986); Phys. Rev. C 37, 2923 (1988).ADSGoogle Scholar
  65. 65.
    A. Gavron et al., Phys. Rev. C 35, 579 (1987).ADSGoogle Scholar
  66. 66.
    A. V. Karpov et al., Phys. Rev. C 63, 054610 (2001); P. N. Nadtochy, G. D. Adeev, and A. V. Karpov, Phys. Rev. C 65, 064615 (2002); D. V. Vanin, G. I. Kosenko, and G. D. Adeev, Phys. Rev. C 59, 2114 (1999).ADSGoogle Scholar
  67. 67.
    F. A. Ivanyuk and H. Hofmann, Nucl. Phys. A 657, 19 (1999).ADSGoogle Scholar
  68. 68.
    H. Hofmann, Phys. Rep. 284, 137 (1997); H. Hofmann and D. Kiderlen, Int. J. Mod. Phys. E 7, 243 (1998).ADSGoogle Scholar
  69. 69.
    W. Nörenberg, Phys. Lett. B 53, 289 (1974).Google Scholar
  70. 70.
    D. Agassi, C. M. Ko, and H. A. Weidenmüller, Ann. Phys. 117, 140 (1979).Google Scholar
  71. 71.
    P. N. Isaev, Yad. Fiz. 41, 664 (1984) [Sov. J. Nucl. Phys. 41, 422 (1984)].Google Scholar
  72. 72.
    L. G. Moretto and J. S. Sventek, Phys. Lett. B 58, 26 (1975).ADSGoogle Scholar
  73. 73.
    V. E. Bunakov, Fiz. Elem. Chastits At. Yadra 11, 1285 (1980) [Sov. J. Part. Nucl. 11, 507 (1980)].Google Scholar
  74. 74.
    H. Hofmann and P. J. Siemens, Nucl. Phys. A 257, 165 (1976); Nucl. Phys. A 275, 464 (1977).ADSGoogle Scholar
  75. 75.
    V. M. Kolomiets and I. Yu. Tsekhmistrenko, Yad. Fiz. 45, 1279 (1987) [Sov. J. Nucl. Phys. 45, 793 (1987)].Google Scholar
  76. 76.
    V. M. Kolomiets, Local Density Approach for Atomic and Nuclear Physics (Nauk. Dumka, Kiev) [in Russian].Google Scholar
  77. 77.
    S. Ayik, B. Schürmann, and W. Nörenberg, Z. Phys. A 277, 299 (1976); Z. Phys. A 279, 145 (1976).ADSGoogle Scholar
  78. 78.
    H. Feldmeier, Rep. Progr. Phys. 50, 915 (1987).ADSGoogle Scholar
  79. 79.
    J. Randrup, Nucl. Phys. A 307, 319 (1978); Nucl. Phys. A 327, 490 (1979).ADSGoogle Scholar
  80. 80.
    G. G. Adamian et al., Nucl. Phys. A 551, 321 (1993).ADSGoogle Scholar
  81. 81.
    M. Baldo and J. Rapisarda, The Response of Nuclei under Extreme Conditions, Ed. by R. A. Broglia (Plenum, New York, 1988).Google Scholar
  82. 82.
    R. V. Jolos, A. I. Muminov, and A. K. Nasirov, Yad. Fiz. 44, 357 (1986) [Sov. J. Nucl. Phys. 44, 228 (1986)]; R. V. Jolos and A. K. Nasirov, Yad. Fiz. 40, 721 (1984) [Sov. J. Nucl. Phys. 40, 463 (1984)]; Yad. Fiz. 45, 1298 (1987) [Sov. J. Nucl. Phys. 45, 805 (1987)]; Yad. Fiz. 42, 1751 (1985).Google Scholar
  83. 83.
    N. V. Antonenko and R. V. Jolos, Yad. Fiz. 50, 98 (1989) [Sov. J. Nucl. Phys. 50, 62 (1989)]; Yad. Fiz. 51, 690 (1989) [Sov. J. Nucl. Phys. 51, 438 (1989)]; N. V. Antonenko and R. V. Jolos, Z. Phys. 338, 423 (1991); Phys. Scr. T. 32, 27 (1990).Google Scholar
  84. 84.
    G. G. Adamyan, R. V. Jolos, and A. K. Nasirov, Yad. Fiz. 55, 660 (1992) [Sov. J. Nucl. Phys. 55, 366 (1992)].Google Scholar
  85. 85.
    G. G. Adamian, R. V. Jolos, and A. K. Nasirov, Z. Phys. A 347, 203 (1994).ADSGoogle Scholar
  86. 86.
    J. Blocki et al., Ann. Phys. 113, 330 (1978).ADSGoogle Scholar
  87. 87.
    C. Ngo and H. Hofmann, Z. Phys. A 282, 83 (1977).ADSGoogle Scholar
  88. 88.
    S. Ayik, Z. Phys. A 292, 257 (1979).ADSGoogle Scholar
  89. 89.
    A. Lukasiak, W. Cassing, and W. Nörenberg, Nucl. Phys. A 426, 181 (1984); D. Berdichevsky et al., Nucl. Phys. A 499, 609 (1989).ADSGoogle Scholar
  90. 90.
    N. V. Antonenko et al., Phys. Lett. B 319, 425 (1993); Phys. Rev. C 51, 2635 (1995).ADSGoogle Scholar
  91. 91.
    G. G. Adamian et al., Nucl. Phys. A 646, 29 (1999); Phys. Rev. C 62, 064303 (2000).ADSGoogle Scholar
  92. 92.
    G. G. Adamian et al., Nucl. Phys. A 627, 361 (1997); Nucl. Phys. A 633, 409 (1998); Nuovo Cim. A 110, 1143 (1997).ADSGoogle Scholar
  93. 93.
    G. G. Adamian, N. V. Antonenko, and Yu. M. Tchuvilsky, Phys. Lett. B 314, 25 (1984).Google Scholar
  94. 94.
    G. G. Adamian, N. V. Antonenko, and W. Scheid, Nucl. Phys. A 678, 24 (2000); Phys. Rev. C 69, 011601(R) (2004); Phys. Rev. C 69, 014607 (2004); Phys. Rev. C 69, 044601 (2004).ADSGoogle Scholar
  95. 95.
    A. S. Zubov et al., Phys. Rev. C 68, 014616 (2003); Phys. Rev. C 65, 024308 (2002).ADSGoogle Scholar
  96. 96.
    E. A. Cherepanov, Preprint OIYaI E7-99-27 (Dubna, 1999).Google Scholar
  97. 97.
    R. V. Jolos, A. I. Muminov, and A. K. Nasirov, Eur. Phys. J. A 4, 245 (1999); G. Giardina et al., Eur. Phys. J. A 8, 205 (2000); G. Fazio et al., Eur. Phys. J. A 22, 75 (2004).ADSGoogle Scholar
  98. 98.
    G. G. Adamian, N. V. Antonenko, and W. Scheid, Nucl. Phys. A 618, 176 (1997).ADSGoogle Scholar
  99. 99.
    C. E. Aguiar, V. C. Barbosa, and R. Donangelo, Nucl. Phys. A 517, 205 (1990); Y. Aritomo et al., Phys. Rev. C 55, 1011 (1997); W. J. Swiatecki, K. Siwek-Wilczynska, and J. Wilczynski. Phys. Rev. C 71, 014602 (2005); C. Shen, G. I. Kosenko, and Y. Abe, Phys. Rev. C 66, 061602 (2002).ADSGoogle Scholar
  100. 100.
    Z. Jing-Shang and H. A. Weidenmüller, Z. Phys. A 347, 203 (1994).Google Scholar
  101. 101.
    P. Grange, Nucl. Phys. A 428, 37 (1984).ADSGoogle Scholar
  102. 102.
    G. D. Adeev and V. V. Pashkevich, Nucl. Phys. A 502, 405 (1989).ADSGoogle Scholar
  103. 103.
    H. Delagrange, Z. Phys. A 323, 437 (1986).ADSGoogle Scholar
  104. 104.
    E. Strumberger, K. Ditrich, and K. Pomorski, Nucl. Phys. A 529, 522 (1991).ADSGoogle Scholar
  105. 105.
    V. M. Kolomietz, S. V. Radionov, and S. Shlomo, Phys. Rev. C 64, 054302 (2001).ADSGoogle Scholar
  106. 106.
    F. Haake and R. Reibold, Phys. Rev. A 32, 2462 (1985).ADSGoogle Scholar
  107. 107.
    B. L. Hu, J. P. Paz, and Y. Zhang, Phys. Rev. D: Part. Fields 45, 2843 (1992).MathSciNetADSGoogle Scholar
  108. 108.
    R. Karrlein and H. Grabert, Phys. Rev. E 55, 153 (1997).ADSGoogle Scholar
  109. 109.
    G. Lindblad, Comm. Math. Phys. 48, 119 (1976); Rep. Math. Phys. 10, 393 (1976).zbMATHMathSciNetADSGoogle Scholar
  110. 110.
    H. Dekker, Phys. Rep. 80, 1 (1981).MathSciNetADSGoogle Scholar
  111. 111.
    A. Isar et al., Int. J. Mod. Phys. E 3, 635 (1994).MathSciNetADSGoogle Scholar
  112. 112.
    Z. Kanokov et al., Phys. Rev. E 71, 016121 (2005); Phys. Rev. E 71, 016122 (2005); Sh. A. Kalandarov et al., Phys. Rev. E 74, 011118 (2006); Phys. Rev. E 75, 031115 (2007).MathSciNetADSGoogle Scholar
  113. 113.
    V. G. Zelevinskii, in Proc. of the 12th Winter School of LIYaF (1977), p. 53.Google Scholar
  114. 114.
    R. V. Jolos, S. P. Ivanova, and V. V. Ivanov, Yad. Fiz. 40, 74 (1984); S. P. Ivanova and R. V. Jolos, Nucl. Phys. A 530, 232 (1991).Google Scholar
  115. 115.
    V. V. Sargsyan et al., Yad. Fiz. 68, 2071 (2005) [Phys. At. Nucl. 68, 2009 (2005)].Google Scholar
  116. 116.
    G. G. Adamyan et al., Teor. Mat. Fiz. 145, 87 (2005) [Theor. Math. Phys. 145, 1443 (2005)].MathSciNetGoogle Scholar
  117. 117.
    J. Ankerhold, P. Pechukas, and H. Grabert, Phys. Rev. Lett. 87, 086802 (2001).ADSGoogle Scholar
  118. 118.
    V. V. Sargsyan et al., Teor. Mat. Fiz. 156, 425 (2008) [Theor. Math. Phys. 156, 1331 (2008)].MathSciNetGoogle Scholar
  119. 119.
    V. V. Sargsyan et al., Phys. Rev. C 77, 024607 (2008).ADSGoogle Scholar
  120. 120.
    V. V. Sargsyan et al., Phys. Rev. A 75, 062115 (2007).ADSGoogle Scholar
  121. 121.
    V. V. Sargsyan et al., Phys. A 386, 36 (2007).MathSciNetGoogle Scholar
  122. 122.
    S. Ayik et al., Phys. Rev. C 71, 054611 (2005); N. Takigawa et al., Phys. Rev. C 69, 054605 (2004).MathSciNetADSGoogle Scholar
  123. 123.
    P. Hanggi, P. Talkner, and M. Borkovec, Rev. Mod. Phys. 62, 251 (1990).MathSciNetADSGoogle Scholar
  124. 124.
    A. Cuccoli et al., Phys. Rev. A 45, 8418 (1992); Phys. Rev. E 55, R4849 (1997).ADSGoogle Scholar
  125. 125.
    B. Jurado, K. H. Schmidt, and J. Benlliure, Phys. Lett. B 553, 186 (2003).ADSGoogle Scholar
  126. 126.
    B. Jurado et al., Nucl. Phys. A 747, 14 (2005).ADSGoogle Scholar
  127. 127.
    V. V. Sargsyan et al., Phys. Rev. C 76, 064604 (2007).ADSGoogle Scholar
  128. 128.
    P. N. Nadtochy, A. Kelic, and K. H. Schmidt, Phys. Rev. C 75, 064614 (2007).ADSGoogle Scholar
  129. 129.
    R. Vandenbosch and J. R. Huizenga, Nuclear Fission (Academic, New York, 1973).Google Scholar
  130. 130.
    S. Raman, C. W. Nestor, and P. Tikkanen, At. Data Nucl. Data Tables 78, 1 (2001).ADSGoogle Scholar
  131. 131.
    G. G. Adamian et al., Int. J. Mod. Phys. E 5, 191 (1996).ADSGoogle Scholar
  132. 132.
    S. Hofmann and G. Münzenberg, Rev. Mod. Phys. 72, 733 (2000); P. Armbruster, Rep. Prog. Phys. 62, 465 (1999); Ann. Rev. Nucl. Part. Sci. 50, 411 (2000); C. R. Phys. 4, 571 (2003); S. Hofmann, Rep. Prog. Phys. 61, 636 (1998); S. Hofmann et al., Eur. Phys. J. A 10, 5 (2001); Eur. Phys. J. A 14, 147 (2002); Eur. Phys. J. A 15, 195 (2002).ADSGoogle Scholar
  133. 133.
    Yu. Ts. Oganessian et al., Phys. Rev. C 69, 021601 (2004); Phys. Rev. C 69, 054607 (2004); Phys. Rev. C 70, 064609 (2004); Phys. Rev. C 72, 034611 (2005).ADSGoogle Scholar
  134. 134.
    K. H. Schmidt and W. Morawek, Rep. Prog. Phys. 54, 949 (1991); K. H. Schmidt et al., in Proc. of Symp. on Physics and Chemistry of Fission (IAEA, Vienna, 1980), p. 409.ADSGoogle Scholar
  135. 135.
    C.-C. Sahm et al., Nucl. Phys. A 441, 316 (1985).ADSGoogle Scholar
  136. 136.
    J. Gilat, Phys. Rev. C 1, 1432 (1970).ADSGoogle Scholar
  137. 137.
    V. S. Barashenkov and V. D. Toneev, High Energy Interaction of Particles and Nuclei with Atomic Nuclei (Atomizdat, Moscow, 1972) [in Russian].Google Scholar
  138. 138.
    O. V. Grusha et al., Nucl. Phys. A 429, 313 (1984).ADSGoogle Scholar
  139. 139.
    O. V. Grusha, S. P. Ivanova, and Yu. N. Shubin, VANT. Nucl. Constants 1, 36 (1987).Google Scholar
  140. 140.
    E. A. Cherepanov, A. S. Iljinov, and M. V. Mebel, J. Phys. G. 9, 931 (1983); E. A. Cherepanov, in Proc. of the Intern. Symp. on In-Beam Nucl. Spectroscopy (Debrecen, 1984), p. 499; E. A. Cherepanov and A. S. Iljinov, Nucleonika 25, 611 (1980).ADSGoogle Scholar
  141. 141.
    A. V. Ignatyuk, K. K. Istekov, and G. N. Smirenkin, Sov. J. Nucl. Phys. 29, 875 (1975).Google Scholar
  142. 142.
    A. Ignatyuk, Statistical Properties of Excited Atomic Nuclei (Energoatomizdat, Moscow, 1983) [in Russian].Google Scholar
  143. 143.
    A. S. Iljinov et al., Nucl. Phys. A 543, 517 (1992).ADSGoogle Scholar
  144. 144.
    A. J. Sierk, Phys. Rev. C 33, 2039 (1986).ADSGoogle Scholar
  145. 145.
    P. Möller and J. R. Nix, At. Data Nucl. Data Tables 39, 213 (1988).ADSGoogle Scholar
  146. 146.
    F. P. Hessberger, Phys. Rev. D: Part. Fields 45, 33 (2007).Google Scholar
  147. 147.
    M. Nurmia et al., Phys. Lett. B 26, 78 (1967).ADSGoogle Scholar
  148. 148.
    K. Nishio et al., Phys. Rev. Lett. 93, 162701 (2004).ADSGoogle Scholar
  149. 149.
    H. W. Gäggeler et al., Z. Phys. A 316, 291 (1984).ADSGoogle Scholar
  150. 150.
    G. Münzenberg et al., Z. Phys. A 302, 7 (1981).ADSGoogle Scholar
  151. 151.
    P. Cagarda, PhD Thesis (Comenius Univ., Bratislava, 2002).Google Scholar
  152. 152.
    F. P. Hessberger et al., GSI Scientific Report. GSI 87-1 (1986), p. 17.Google Scholar
  153. 153.
    G. N. Akapiev et al., Atom Energ. 21, 243 (1966).Google Scholar
  154. 154.
    K. Nishio et al., JAERI-Review 027, 39 (2004).Google Scholar
  155. 155.
    V. V. Sargsyan et al., Preprint JINR P4-2008-32; Yad. Fiz. (in press).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • V. V. Sargsyan
    • 1
  • Z. Kanokov
    • 1
    • 2
  • G. G. Adamian
    • 1
    • 3
    Email author
  • N. V. Antonenko
    • 1
  1. 1.Joint Institute for Nuclear ResearchDubna, Moscow oblastRussia
  2. 2.National UniversityTashkentUzbekistan
  3. 3.Institute of Nuclear PhysicsTashkentUzbekistan

Personalised recommendations