Physics of Atomic Nuclei

, Volume 81, Issue 5, pp 638–643 | Cite as

Nuclear-Physics Model of the Knee in the EAS Spectrum

  • S. B. ShaulovEmail author
Elementary Particles and Fields Theory


Spectra of the most energetic hadrons in cores of extensive air showers (EAS) were obtained for the first time in the HADRON hybrid experiment in Tien Shan mountains. The spectra in question exhibit a scaling violation, which requires invoking nontrivial effects in order to explain this circumstance. In the present article, unusual data on pp-interaction cross sections from recent experiments at the Large Hadron Collider are analyzed with this aim in view. A comparison with data at lower energies shows that the elastic cross section for pp interaction grows faster than the respective inelastic cross section. It would be natural to expect that a similar or a stronger effect is present in nucleus–nucleus interactions in cosmic rays. A possible change in the properties of nuclear cascades in the Earth’s atmosphere provides the possibility of discussing a new interpretation of the knee in the EAS spectrum and some exotic phenomena observed in cosmic-ray experiments. This interpretation is proposed for the first time. Particular attention is given to unique data from the HADRON hybrid experiment.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. V. Kulikov and G. B. Christiansen, Sov. Phys. JETP 8, 441 (1959).Google Scholar
  2. 2.
    S. B. Shaulov, in Proceedings of the 27th International Cosmic Ray Conference ICRC, Hamburg, Germany, 2001, Ed. by K.-H. Kampert, G. Hainzelmann, and C. Spiering (Hamburg, 2003), p. 122; arXiv: 1610.07427v1 [astro-ph.HE].Google Scholar
  3. 3.
    A. P. Garyaka, R. M. Martirosov, S. V. Ter-Antonyan, A. D. Erlykin, N. M. Nikolskaya, Y. A. Gallant, L. W. Jones, and J. Procureur, J. Phys. G 35, 115201 (2008).ADSCrossRefGoogle Scholar
  4. 4.
    TOTEM Collab. (G. Antchev et al.), Europhys. Lett. 101, 21004 (2013). doi 10.1209/0295-5075/101/21004ADSCrossRefGoogle Scholar
  5. 5.
    Particle Data Group (K. Nakamura et al.), J. Phys. G 37, 075021 (2010). doi 10.1088/0954-3899/37/7A/075021ADSCrossRefGoogle Scholar
  6. 6.
    I. M. Dremin, Phys. Usp. 56, 3 (2013).ADSCrossRefGoogle Scholar
  7. 7.
    I. M. Dremin, Int. J. Mod. Phys. A 31, 1650107 (2016).ADSCrossRefGoogle Scholar
  8. 8.
    I. M. Dremin, Phys. Usp. 58, 61 (2015). doi 10.3367/UFNr.0185.201501d.0065ADSCrossRefGoogle Scholar
  9. 9.
    I. M. Dremin, Phys. Usp. 60, 333 (2017). doi 10.3367/UFNr.2016.11.037977ADSCrossRefGoogle Scholar
  10. 10.
    G. A. Leksin, Soros. Obrazov. Zh., No. 12, 69 (1996).Google Scholar
  11. 11.
    M. Tamada, H. Aoki, K. Honda, N. Inoue, N. Kawasumi, N. Martinic, N. Ochi, N. Ohmori, A. Ohsawa, H. Semba, and R. Ticona, EPJ Web Conf. 52, 07006 (2013). doi 10/1051/epjconf201/35207006CrossRefGoogle Scholar
  12. 12.
    Tibet ASy Collab. (M. Amenomori et al.), Phys. Rev. D 62, 112002, 072007 (2000); Phys. Lett. B 632, 58 (2006).ADSCrossRefGoogle Scholar
  13. 13.
    S. B. Shaulov, P. F. Beyl, R. U. Beysembaev, E. A. Beysembaeva, S. P. Bezshapov, A. S. Borisov, K. V. Cherdyntceva, M. M. Chernyavsky, A. P. Chubenko, O. D. Dalkarov, V. G. Denisova, A. D. Erlykin, N. V. Kabanova, E. A. Kanevskaya, K. A. Kotelnikov, A. E. Morozov, et al., EPJ Web Conf. 145, 17001 (2017). doi 10.1051/epjconf/201714517001CrossRefGoogle Scholar
  14. 14.
    S. B. Shaulov, PhIAS ReportNo. 245 (Lebedev Phys. Inst. Acad. Sci., Moscow, 1987), p. 3.Google Scholar
  15. 15.
    A. M. Dunaevsky, M. Pluta, and S. A. Slavatinsky, in Proceedings of the 5th International Symposium on Very High Energy Cosmic-Ray Interactions, Lodz, Poland, Ed. by M. Giler (jmUniv. of Lodz, Lodz, 1988), p. 143.Google Scholar
  16. 16.
    F. Halzen, in Proceedings of the 7th International Symposium on Very High Energy Cosmic Ray Interactions, Ann Arbor, USA, 1992, Ed. by L. Jones, AIP Conf. Proc. 276, 679 (1993).ADSGoogle Scholar
  17. 17.
    J. D. Bjorken and L. D. McLerran, Phys. Rev. D 20, 2353 (1979).ADSCrossRefGoogle Scholar
  18. 18.
    S. B. Shaulov, in Proceedings of the Workshop on Strangeness in Hadronic Matter Strangeness’96, Budapest, Hungary, 1996, Ed. by T. Csörgo, P. Levai, and J. Zimanyi, Heavy Ion Phys. 4, 403 (1996). doi 10.1007/BF03155637Google Scholar
  19. 19.
    V. I. Yakovlev, in Proceedings of the 7th International Symposium on Very High Energy Cosmic Ray Interactions, Ann Arbor, USA, 1992, Ed. by L. Jones, AIP Conf. Proc. 276, 154 (1993).ADSGoogle Scholar
  20. 20.
    PAMIR Collab. (S. G. Baiburina et al.), Izv. Akad. Nauk SSSR, Ser. Fiz. 53, 277 (1989).Google Scholar
  21. 21.
    S. B. Shaulov, Cosmic Rays about Strange Quark Stars (Experiment HADRON) (LAP LAMBERT, Deutchland, 2015).Google Scholar
  22. 22.
    C. M. G. Lattes, Y. Fujimoto, and S. Hasegawa, Phys. Rep. 65, 151 (1980).ADSCrossRefGoogle Scholar
  23. 23.
    A. D. Erlykin and A. W. Wolfendale, J. Phys. G 31, 791 (2005).ADSCrossRefGoogle Scholar
  24. 24.
    V. S. Puchkov, Nuovo Cimento C 19, 1011 (1996).ADSCrossRefGoogle Scholar
  25. 25.
    J. V. Jelly and W. J. Whitehouse, Proc. Phys. Soc. A 66, 454 (1953).ADSCrossRefGoogle Scholar
  26. 26.
    D. Beznosko, R. Beisembaev, K. Baigarin, E. Beisembaeva, O. Dalkarov, V. Ryabov, T. Sadykov, S. Shaulov, A. Stepanov, M. Vildanova, N. Vildanov, and V. Zhukov, EPJ Web Conf. 145, 14001 (2017). doi 10.1051/epjconf/201614514001CrossRefGoogle Scholar
  27. 27.
    S. P. Besshapov and S. B. Shaulov, Bull. Russ. Acad. Sci.: Phys. 79, 311 (2015).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Lebedev Physical InstituteRussian Academy of SciencesMoscowRussia
  2. 2.Moscow Institute of Physics and Technology (State University)DolgoprudnyiRussia

Personalised recommendations