Physics of Atomic Nuclei

, Volume 81, Issue 1, pp 139–145 | Cite as

Heating and Nonequilibrium Distributions of Ions in a Reverse Shock Wave of the SN 1987A Remnant

  • Yu. A. Kropotina
  • A. M. Bykov
  • A. V. Kozlova
  • A. M. Krassilchtchikov
  • K. P. Levenfish
  • S. I. Blinnikov
Elementary Particles and Fields Theory


A hydrodynamical description of supernova remnants is based on the approximation of locally equilibrium particle distributions. Shock waves in supernova remnants at various stages of ejecta propagation are collisionless and form nonequilibrium particle distributions that relax slowly to quasiequilibrium distributions within a time longer than the hydrodynamic time. A kinetic model of the heating of ions behind the front of a shock wave in the SN 1987A remnant is considered with allowance for a complex chemical composition of the ejecta, and nonequilibrium distributions of ions in the vicinity of this shock wave are calculated. In addition to the quasi-Maxwellian peak, which determines the effective temperature of a given charge state of an ion, nonequilibriumdistributions of ions contain, in some cases, a suprethermal component, which may describe to the injection of ions in the process of cosmic-ray acceleration.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. S. Imshennik and D. K. Nadezhin, Sov. Astron. Lett. 14, 449 (1988).ADSGoogle Scholar
  2. 2.
    R. McCray and C. Fransson, Ann. Rev. Astron. Astrophys. 54, 19 (2016).ADSCrossRefGoogle Scholar
  3. 3.
    R. Indebetouw, M. Matsuura, E. Dwek, G. Zanardo, M. J. Barlow, M. Baes, P. Bouchet, D. N. Burrows, R. Chevalier, G. C. Clayton, C. Fransson, B. Gaensler, R. Kirshner, M. Lakićević, K. S. Long, P. Lundqvist, et al., Astrophys. J. Lett. 782, L2 (2014).ADSCrossRefGoogle Scholar
  4. 4.
    T. M. Potter, L. Staveley-Smith, B. Reville, C.-Y. Ng, G. V. Bicknell, R. S. Sutherland, and A. Y. Wagner, Astrophys. J. 794, 174 (2014).ADSCrossRefGoogle Scholar
  5. 5.
    E. Dwek and R. G. Arendt, Astrophys. J. 810, 75 (2015).ADSCrossRefGoogle Scholar
  6. 6.
    E. Michael, R. McCray, R. Chevalier, A. V. Filippenko, P. Lundqvist, P. Challis, B. Suger-man, S. Lawrence, C. S. J. Pun, P. Garnavich, R. Kirshner, A. Crotts, C. Fransson, W. Li, N. Panagia, M. Phillips, et al., Astrophys. J. 593, 809 (2003).ADSCrossRefGoogle Scholar
  7. 7.
    S. Mattila, P. Lundqvist, P. Gröningsson, P. Meikle, R. Stathakis, C. Fransson, and R. Cannon, Astrophys. J. 717, 1140 (2010).ADSCrossRefGoogle Scholar
  8. 8.
    J. Larsson, C. Fransson, J. Spyromilio, B. Leibundgut, P. Challis, R. A. Chevalier, K. France, A. Jerkstrand, R. P. Kirshner, P. Lundqvist, M. Matsuura, R. McCray, N. Smith, J. Sollerman, P. Garnavich, K. Heng, et al., Astrophys. J. 833, 147 (2016).ADSCrossRefGoogle Scholar
  9. 9.
    C. Fransson, J. Larsson, J. Spyromilio, R. Chevalier, P. Gröningsson, A. Jerkstrand, B. Leibundgut, R. McCray, P. Challis, R. P. Kirshner, K. Kjaer, P. Lundqvist, and J. Sollerman, Astrophys. J. 768, 88 (2013).ADSCrossRefGoogle Scholar
  10. 10.
    C. Fransson, J. Larsson, K. Migotto, D. Pesce, P. Challis, R. A. Chevalier, K. France, R. P. Kirshner, B. Leibundgut, P. Lundqvist, R. McCray, J. Spyromilio, F. Taddia, A. Jerkstrand, S. Mattila, N. Smith, et al., Astrophys. J. Lett. 806, L19 (2015).ADSCrossRefGoogle Scholar
  11. 11.
    K. France, R. McCray, S. V. Penton, R. P. Kirshner, P. Challis, J. M. Laming, P. Bouchet, R. Chevalier, P. M. Garnavich, C. Fransson, K. Heng, J. Larsson, S. Lawrence, P. Lundqvist, N. Panagia, C. S. J. Pun, et al., Astrophys. J. 743, 186 (2011).ADSCrossRefGoogle Scholar
  12. 12.
    K. France, in Proceedings of the 296th Symposium of the International Astronomical Union, Raichak on Ganges, Calcutta, India, 2013, Ed. by A. K. Ray and R. M. McCray (Cambridge Univ. Press, Cambridge, 2014), p.1.Google Scholar
  13. 13.
    K. France, R. McCray, C. Fransson, J. Larsson, K. A. Frank, D. N. Burrows, P. Challis, R. P. Kirshner, R. A. Chevalier, P. Garnavich, K. Heng, S. S. Lawrence, P. Lundqvist, N. Smith, and G. Sonneborn, Astrophys. J. Lett. 801, L16 (2015).ADSCrossRefGoogle Scholar
  14. 14.
    S. A. Zhekov, R. McCray, K. J. Borkowski, D. N. Burrows, and S. Park, Astrophys. J. 645, 293 (2006).ADSCrossRefGoogle Scholar
  15. 15.
    S. A. Zhekov, R. McCray, D. Dewey, C. R. Canizares, K. J. Borkowski, D. N. Burrows, and S. Park, Astrophys. J. 692, 1190 (2009).ADSCrossRefGoogle Scholar
  16. 16.
    The H. E. S. S. Collab., Science 347, 406 (2015).ADSCrossRefGoogle Scholar
  17. 17.
    S. Orlando, M. Miceli, M. L. Pumo, and F. Bocchino, Astrophys. J. 810, 168 (2015).ADSCrossRefGoogle Scholar
  18. 18.
    R. A. Chevalier and V. V. Dwarkadas, Astrophys. J. Lett. 452, L45 (1995).ADSCrossRefGoogle Scholar
  19. 19.
    J. G. Kirk, P. Duffy, and L. Ball, Astrophys. J. Suppl. Ser. 90, 807 (1994).ADSCrossRefGoogle Scholar
  20. 20.
    D. Winske, Space Sci. Rev. 42, 53 (1985).ADSCrossRefGoogle Scholar
  21. 21.
    A. P. Matthews, J. Comput. Phys. 112, 102 (1994).ADSCrossRefGoogle Scholar
  22. 22.
    L. Bennett and D. C. Ellison, J. Geophys. Res. 100, 3439 (1995).ADSCrossRefGoogle Scholar
  23. 23.
    Yu. A. Kropotina, M. Yu. Gustov, A. M. Krasil’shchikov, K. P. Levenfish, and G. G. Pavlov, NTV SPbGPU, No. 116, 99 (2011).Google Scholar
  24. 24.
    Yu. A. Kropotina, A. M. Bykov, M. Yu. Gustov, A. M. Krassilchtchikov, and K. P. Levenfish, Tech. Phys. 60, 231 (2015).CrossRefGoogle Scholar
  25. 25.
    Yu. A. Kropotina, A. M. Bykov, A. M. Krasil’shchikov, and K. P. Levenfish, Tech. Phys. 61, 517 (2016).CrossRefGoogle Scholar
  26. 26.
    D. Caprioli and A. Spitkovsky, Astrophys. J. 783, 91 (2014).ADSCrossRefGoogle Scholar
  27. 27.
    N. Smith, S. A. Zhekov, K. Heng, R. McCray, J. A. Morse, and M. Gladders, Astrophys. J. Lett. 635, L41 (2005).ADSCrossRefGoogle Scholar
  28. 28.
    A. R. Bell, Mon. Not. R. Astron. Soc. 353, 550 (2004).ADSCrossRefGoogle Scholar
  29. 29.
    T. N. Kato and H. Takabe, Astrophys. J. Lett. 681, L93 (2008).ADSCrossRefGoogle Scholar
  30. 30.
    T. N. Kato and H. Takabe, Astrophys. J. 721, 828 (2010).ADSCrossRefGoogle Scholar
  31. 31.
    C. Kozma and C. Fransson, Astrophys. J. 496, 946 (1998).ADSCrossRefGoogle Scholar
  32. 32.
    C. Kozma and C. Fransson, Astrophys. J. 497, 431 (1998).ADSCrossRefGoogle Scholar
  33. 33.
    S. E. Woosley, P. A. Pinto, P. G. Martin, and T. A. Weaver, Astrophys. J. 318, 664 (1987).ADSCrossRefGoogle Scholar
  34. 34.
    W. D. Arnett, J. N. Bahcall, R. P. Kirshner, and S. E. Woosley, Ann. Rev. Astron. Astrophys. 27, 629 (1989).ADSCrossRefGoogle Scholar
  35. 35.
    E. I. Sorokina, S. I. Blinnikov, D. I. Kosenko, and P. Lundqvist, Astron. Lett. 30, 737 (2004).ADSCrossRefGoogle Scholar
  36. 36.
    A. M. Bykov, P. E. Gladilin, and S. M. Osipov, Mon. Not. R. Astron. Soc. 429, 2755 (2013).ADSCrossRefGoogle Scholar
  37. 37.
    D. Caprioli, D. T. Yi, and A. Spitkovsky, arXiv: 1704.08252.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • Yu. A. Kropotina
    • 1
  • A. M. Bykov
    • 1
    • 2
  • A. V. Kozlova
    • 1
    • 3
  • A. M. Krassilchtchikov
    • 1
  • K. P. Levenfish
    • 1
  • S. I. Blinnikov
    • 4
    • 5
  1. 1.Ioffe Physical-Technical InstituteRussian Academy of SciencesSt. PetersburgRussia
  2. 2.Peter the Great St. Petersburg Polytechnic UniversitySt. PetersburgRussia
  3. 3.Sternberg Astronomical Institute (GAISh)Moscow State UniversityMoscowRussia
  4. 4.Institute for Theoretical and Experimental PhysicsNational Research Center Kurchatov InstituteMoscowRussia
  5. 5.Dukhov All-Russia Research Institute of Automatics (VNIIA)MoscowRussia

Personalised recommendations