Physics of Atomic Nuclei

, Volume 80, Issue 4, pp 761–768 | Cite as

On classical and semiclassical properties of the Liouville theory with defects

Elementary Particles and Fields Theory
  • 22 Downloads

Abstract

The Lagrangian of the Liouville theory with topological defects is analyzed in detail and general solution of the corresponding defect equations of motion is found. We study the heavy and light semiclassical limits of the defect two-point function found before via the bootstrap program. We show that the heavy asymptotic limit is given by the exponential of the Liouville action with defects, evaluated on the solutions with two singular points. We demonstrate that the light asymptotic limit is given by the finite-dimensional path integral over solutions of the defect equations of motion with a vanishing energy–momentum tensor.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. B. Petkova and J.-B. Zuber, Phys. Lett. B 504, 157 (2001).ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    N. Drukker et al., JHEP 1106, 025 (2011).ADSCrossRefGoogle Scholar
  3. 3.
    G. Sarkissian, Nucl. Phys. B 821, 607 (2009).ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    G. Sarkissian, Int. J. Mod. Phys. A 27, 1250181 (2012).ADSCrossRefGoogle Scholar
  5. 5.
    V. B. Petkova and J.-B. Zuber, Nucl. Phys. B 603, 449 (2001).ADSCrossRefGoogle Scholar
  6. 6.
    A. R. Aguirre, J. Phys. Conf. Ser. 474, 012001 (2013).CrossRefGoogle Scholar
  7. 7.
    E. Corrigan and C. Zambon, J. Phys. A 42, 475203 (2009).ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    N. Seiberg, Prog. Theor. Phys. Suppl. 102, 319 (1990).ADSCrossRefGoogle Scholar
  9. 9.
    A. Zamolodchikov and Al. Zamolodchikov, Nucl. Phys. B 477, 577 (1996).ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    V. A. Fateev and A. V. Litvinov, JHEP 0711, 002 (2007).ADSCrossRefGoogle Scholar
  11. 11.
    V. Fateev and S. Ribault, JHEP 1012, 089 (2010).ADSCrossRefGoogle Scholar
  12. 12.
    L. Hadasz and Z. Jackólsi, Nucl. Phys. B 757, 233 (2006).ADSCrossRefGoogle Scholar
  13. 13.
    D. Harlow et al., JHEP 1112, 071 (2011).ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    J. Liouville, J.Math. Pur. Appl. 18, 71 (1853)Google Scholar
  15. 15.
    J. L. Gervais and A. Neveu, Nucl. Phys. B 199, 59 (1982).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Yerevan Physics InstituteYerevanArmenia
  2. 2.Department of PhysicsYerevan State UniversityYerevanArmenia

Personalised recommendations