Advertisement

Physics of Atomic Nuclei

, Volume 80, Issue 4, pp 666–678 | Cite as

Application of nuclear-physics methods in space materials science

  • L. S. NovikovEmail author
  • E. N. Voronina
  • L. I. Galanina
  • N. P. Chirskaya
Elementary Particles and Fields Theory
  • 48 Downloads

Abstract

The brief history of the development of investigations at the Skobeltsyn Institute of Nuclear Physics, Moscow State University (SINP MSU) in the field of space materials science is outlined. A generalized scheme of a numerical simulation of the radiation impact on spacecraft materials and elements of spacecraft equipment is examined. The results obtained by solving some of the most important problems that modern space materials science should address in studying nuclear processes, the interaction of charged particles with matter, particle detection, the protection from ionizing radiation, and the impact of particles on nanostructures and nanomaterials are presented.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. N. Vernov, P. V. Vakulov, and Yu. I. Logachev, in Achievements of USSR in the Study of Cosmic Space: First Ten Cosmic Years, 1957–1967, Collection of Articles (Nauka, Moscow, 1968), p. 106 [in Russian].Google Scholar
  2. 2.
    L. S. Novikov and M. I. Panasyuk, Vopr. At. Nauki Tekh., Ser. Fiz. Rad. Vozdeistv. Radioelektron. Appar., No. 4, 3 (2002).Google Scholar
  3. 3.
    S. N. Vernov, N. L. Grigorov, Yu. I. Logachev, and A. E. Chudakov, Sov. Phys. Dokl. 3, 617 (1958).ADSGoogle Scholar
  4. 4.
    Yu. I. Logachev, 40 Years of Cosmic Era in SINPh MSU (Mosk.Gos. Univ., Moscow, 1998) [inRussian].Google Scholar
  5. 5.
    A. I. Akishin and L. S. Novikov, in Encyclopedy of Lomonosov Moscow State University. Skobeltsyn Institute of Nuclear Physics, Collection of Articles (Biblion–Russkaya kniga, Moscow, 2006), p. 55 [in Russian].Google Scholar
  6. 6.
    L. S. Novikov, Moscow Univ. Phys. Bull. 65, 259 (2010).CrossRefGoogle Scholar
  7. 7.
    Radiation Conditions in Cosmic Space, Ed. by M. I. Panasyuk (Biblion–Russkaya kniga, Moscow, 2006), p. 132 [in Russian].Google Scholar
  8. 8.
    Igor Borisovich Teplov: To 80th Anniversary of Birth, Ed. by N. S. Zelenskaya, M. I. Panasyuk, and E. A. Romanovsky (Univ. Kniga,Moscow, 2008), p. 113 [in Russian].Google Scholar
  9. 9.
    T. T. Böhlen et al., At. Data Nucl. Data Sheets 120, 211 (2014)ADSCrossRefGoogle Scholar
  10. 9a.
    A. Ferrari, P. R. Sala, A. Fasso, and J. Ranft, FLUKA: a Multi-Particle Transport Code (CERN, Geneva, 2005), INFN/TC_05/11, SLACR-773CrossRefGoogle Scholar
  11. 9b.
    http://www.fluka.org/fluka.php.Google Scholar
  12. 10.
    R. Brun et al., GEANT. Detector Description and Simulation Tool. User’s Guide (CERN, Geneva, 1993).Google Scholar
  13. 11.
    S. Agostinelli et al., Nucl. Instrum. Methods Phys. Res. A 506, 250 (2003).ADSCrossRefGoogle Scholar
  14. 12.
    https://twiki.cern.ch/twiki/bin/view/Geant4Lowe-MuElec.Google Scholar
  15. 13.
    S. Incerti et al., Med. Phys. 37, 4692 (2010).CrossRefGoogle Scholar
  16. 14.
    Geant4 Physics Reference Manual, Version Geant4 10.1 (2014). http://geant4.web.cern.ch/geant4/UserDocumentation/ UsersGuides/PhysicsReferenceManual/fo/ PhysicsReferenceManual.pdf.Google Scholar
  17. 15.
    F. Lei et al., IEEE Trans. Nucl. Sci. 49, 2788 (2002).ADSCrossRefGoogle Scholar
  18. 16.
    F. Lei and P. Truscott, Geant4-Based Microdosimetry Analysis Tool. Software User’s Manual (QinetiQ, Farnborough, 2007).Google Scholar
  19. 17.
    J. F. Ziegler, M. D. Ziegler, and J. P. Biersack, Nucl. Instrum. Methods Phys. Res. B 268, 1818 (2010).ADSCrossRefGoogle Scholar
  20. 18.
    W. Möller and W. Eckstein, Nucl. Instrum. Methods Phys. Res. B 2, 814 (1984).ADSCrossRefGoogle Scholar
  21. 19.
    A. A. Makletsov, V. N. Mileev, L. S. Novikov, and V. V. Sinolits, Inzh. Ekol., No. 1, 39 (1997).Google Scholar
  22. 20.
    www.spenvis.oma.be/help/models/ssat.html.Google Scholar
  23. 21.
    J. L. Shinn and J. W. Wilson, NASA Technical Paper 3147 (NASA, 1992).Google Scholar
  24. 22.
    A. I. Chumakov, Cosmic Radiation Effect on Integral Circuits (Radio Svyaz’, Moscow, 2004).Google Scholar
  25. 23.
    I. N. Tsymbalov, K. A. Ivanov, R. V. Volkov, A. B. Savel’ev, L. S. Novikov, L. I. Galanina, N. P. Chirskaya, V. Yu. Bychenkov, and A. I. Chumakov, Fiz. Khim. Obrab.Mater., No. 1, 25 (2016).Google Scholar
  26. 24.
    T. Bion and J. Bourrieau, IEEE Trans. Nucl. Sci. 36, 2281 (1989).ADSCrossRefGoogle Scholar
  27. 25.
    A. Akkerman, J. Barak, and Y. Lifshitz, IEEE Trans. Nucl. Sci. 49, 1539 (2002).ADSCrossRefGoogle Scholar
  28. 26.
    V. Andersen et al., Adv. Space Res. 34, 1302 (2004).ADSCrossRefGoogle Scholar
  29. 27.
    http://www.nndc.bnl.gov/sigma/getInterpreted.jsp?-evalid=10917&mf=6&mt=5.Google Scholar
  30. 28.
    ftp://ftp.nrg.eu/pub/www/talys/tendl2014/tendl-2014.html.Google Scholar
  31. 29.
    N. V. Kuznetsov, Vopr. At. Nauki Tekh., Ser.: Fiz. Rad. Vozdeistv. Radioelektron. Appar., Nos. 1–2, 46 (2007).Google Scholar
  32. 30.
    E. N. Voronina, L. I. Galanina, N. S. Zelenskaya, V.M. Lebedev, V.N. Mileev, L. S. Novikov,V. V. Sinolits, and A. V. Spassky, Bull. Russ. Acad. Sci.: Phys. 73, 197 (2009).CrossRefGoogle Scholar
  33. 31.
    H. Nishioka, J. J. M. Verbaarschot, H. A. Weidenmüller, and S. Yoshida, Ann. Phys. (N. Y.) 172, 67 (1986).ADSCrossRefGoogle Scholar
  34. 32.
    M. Blann and M. B. Chadwick, Phys. Rev. C 57, 233 (1998).ADSCrossRefGoogle Scholar
  35. 33.
    http://www.nndc.bnl.gov/empire/.Google Scholar
  36. 34.
    E. N. Voronina and N. P. Chirskaya, Fiz. Khim. Obrab.Mater., No. 5, 23 (2013).Google Scholar
  37. 35.
    O V. Chubarov, A. S. Alimov, and V. I. Shvedunov, IEEE Trans. Nucl. Sci. 44, 1037 (1997).ADSCrossRefGoogle Scholar
  38. 36.
    V. V. Gromov, Electrical Charge in Irradiated Materials (Energoizdat, Moscow, 1982) [in Russian].Google Scholar
  39. 37.
    N. A. Vlasova, L. S. Novikov, I. A. Rubinshtein, A.V. Spassky, and N. P. Chirskaya, Fiz. Khim.Obrab. Mater., No. 6, 32 (2013).Google Scholar
  40. 38.
    ISO/TS 27687: Nanotechnologies–Terminology and Definitions for Nano-Objects (2008).Google Scholar
  41. 39.
    Nanoscale Science and Technology, Ed. by R. W. Kelsall, I. W. Hamley, and M. Geoghegan (Wiley, Hoboken, NJ, 2005).Google Scholar
  42. 40.
    M. S. P. Shaffer and J. K. W. Sandler, Processing and Properties of Nanocomposites (World Scientific, Singapore, 2006), Chap.1.Google Scholar
  43. 41.
    K. A. Watson and J. W. Connell, in Carbon Nanotechnology: Recent Developments in Chemistry, Physics, Materials Science, and Device Applications, Ed. by L. Dai (Elsevier, Amsterdam, 2006), p.677.Google Scholar
  44. 42.
    I. P. Suzdalev, Nanotechnology: Physicochemistry of Nanoclusters, Nanostructures and Nanomaterials, 2nd ed. (Librokom, Moscow, 2009) [in Russian].Google Scholar
  45. 43.
    L. S. Novikov and E. N. Voronina, Prospects of Nanomaterial Application in Cosmic Technology (Universitetskaya kniga, Moscow, 2008) [in Russian].Google Scholar
  46. 44.
    A. V. Krasheninnikov and K. Nordlund, J. App. Phys. 107, 071301 (2010).ADSCrossRefGoogle Scholar
  47. 45.
    G. Ackland, Science 327, 1587 (2010).CrossRefGoogle Scholar
  48. 46.
    Y. Zhang and W. J. Weber, in Ion Beams in Nanoscience and Technology, Ser. Particle Acceleration and Detection, Ed. by R. Hellborg et al. (Springer, Berlin, Heidelberg, 2009).Google Scholar
  49. 47.
    I. A. Ovid’ko and A. G. Sheinerman, Appl. Phys. A 81, 1083 (2005).ADSCrossRefGoogle Scholar
  50. 48.
    R. A. Andrievskii, Phys. Met. Metallogr. 110, 229 (2010).ADSCrossRefGoogle Scholar
  51. 49.
    L. S. Novikov, V. N. Mileev, E. N. Voronina, L. I. Galanina, A. A. Makletsov, and V. V. Sinolits, J. Surf. Invest.: X-Ray, Synchrotr., Neutron Tech. 3, 199 (2009).CrossRefGoogle Scholar
  52. 50.
    K. Nordlund and F. Djurabekova, J. Comput. Electron. 13, 122 (2014).CrossRefGoogle Scholar
  53. 51.
    R. B. Ross and S. Mohanty, Multiscale Simulation Methods for Nanomaterials (Wiley, Hoboken, 2008), Chap.1.Google Scholar
  54. 52.
    M. Bender, P.-H. Heenen, and P.-G. Reinhard, Rev. Mod. Phys. 75, 121 (2003).ADSCrossRefGoogle Scholar
  55. 53.
    P. Hohenberg and W. Kohn, Phys. Rev. B 136, 864 (1964)ADSCrossRefGoogle Scholar
  56. 53a.
    W. Kohn and L. J. Sham, Phys. Rev. A 140, 1133 (1965).ADSCrossRefGoogle Scholar
  57. 54.
    Extended Density Functionals in Nuclear Structure Physics, Ed. by G. A. Lalazissis, P. Ring, and D. Vretenar, Lect. Notes Phys. 641 (2004).Google Scholar
  58. 55.
    Th. Frauenheim et al., J. Phys.: Condens. Matter 14, 3015 (2002).ADSGoogle Scholar
  59. 56.
    E. N. Voronina and L. S. Novikov, Bull. Russ. Acad. Sci.: Phys. 77, 814 (2013).CrossRefGoogle Scholar
  60. 57.
    T. K. Minton and D. J. Garton, in Chemical Dynamics in Extreme Environments, Ed. by R. A. Dressler, Adv. Ser. Phys. Chem. 11, 420 (2001).CrossRefGoogle Scholar
  61. 58.
    V. N. Chernik, in Proceedings of the 7th International Symposium onMaterials in Space Environment, Toulouse, 1997, Ed. by T. D. Guyenne, ESASP-399 (European Space Agency, France, Noordwijk, 1997), p.237.Google Scholar
  62. 59.
    N. G. Chechenin, P. N. Chernykh, E. A. Vorobyeva, and O. S. Timofeev, Appl. Surf. Sci. 275, 217 (2013).ADSCrossRefGoogle Scholar
  63. 60.
    L. S. Novikov, E. N. Voronina, V. N. Chernik, N. G. Chechenin, A. V. Makunin, and E. A. Vorob’eva, J. Surf. Invest.: X-Ray, Synchrotr., Neutron Tech. 10, 617 (2016).CrossRefGoogle Scholar
  64. 61.
    L. S. Novikov, E. N. Voronina, V. N. Chernik, K. B. Vernigorov, and M. Yu. Yablokova, J. Space Rockets 53, 1012 (2016).ADSCrossRefGoogle Scholar
  65. 62.
    D. V. Kosynkin, A. L. Higginbotham, A. Sinitskii, J. R. Lomeda, A. Dimiev, B. K. Price, and J. M. Tour, Nature 458, 872 (2009).ADSCrossRefGoogle Scholar
  66. 63.
    E. N. Voronina and L. S. Novikov, RSC Adv. 3, 15362 (2013).CrossRefGoogle Scholar
  67. 64.
    E. N. Voronina, L. S. Novikov, V. N. Chernik, N. P. Chirskaya, K. B. Vernigorov, G. G. Bondarenko, and A. I. Gaidar, Inorg. Mater.: Appl. Res. 3, 95 (2012).CrossRefGoogle Scholar
  68. 65.
    K. B. Vernigorov, A. Yu. Alent’ev, A. M. Muzafarov, L. S. Novikov, and V. N. Chernik, J. Surf. Invest.: Xray, Synchrotr., Neutron Tech. 5, 263 (2011).CrossRefGoogle Scholar
  69. 66.
    L. S. Novikov, E. N. Voronina, V. N. Chernik, and L. A. Zhilyakov, J. Surf. Invest.: X-ray, Synchrotr., Neutron Tech. 10, 829 (2016).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • L. S. Novikov
    • 1
    • 2
    Email author
  • E. N. Voronina
    • 1
  • L. I. Galanina
    • 1
  • N. P. Chirskaya
    • 1
  1. 1.Skobeltsyn Institute of Nuclear PhysicsLomonosov Moscow State UniversityMoscowRussia
  2. 2.National Research University Higher School of EconomicsMoscowRussia

Personalised recommendations