Physics of Atomic Nuclei

, Volume 80, Issue 4, pp 713–717 | Cite as

Analysis of a possible explanation of the positron anomaly in terms of dark matter

  • V. V. Alekseev
  • K. M. Belotsky
  • Yu. V. Bogomolov
  • R. I. Budaev
  • O. A. Dunaeva
  • A. A. Kirillov
  • A. V. Kuznetsov
  • A. D. Lukyanov
  • V. V. Malakhov
  • A. G. Mayorov
  • M. A. Mayorova
  • A. F. Mosichkin
  • A. A. Okrugin
  • S. A. Rodenko
  • A. M. Shitova
Elementary Particles and Fields Theory

Abstract

The possibility of explaining the positron anomaly on the basis of models involving the darkmatter annihilation or decay is being widely discussed at the present time. However, such models are severely constrained by data on cosmic gamma radiation. Two different procedures that rely on the χ2 criterion and which permit taking this constraint into account are considered in the present study. In one case, the use of positron data alone in searches for a minimum value of χ2 via varying model parameters is followed by a comparison with gamma-radiation data. In the second case, the χ2 functional is minimized by simultaneously employing positron and gamma-radiation data, whereby a more lenient (more “flexible”) constraint is obtained. Nevertheless, either procedure rules out the possibility of explaining the positron anomaly in terms of unstable dark matter distributed over the whole halo. The assumption that the dark-matter component undergoing annihilation (decay) is concentrated within the galactic disk makes it possible to remove the constraint in either case.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. E. Gunn, B. W. Lee, I. Lercje, D. N. Scharamm, and G. Steigman, Astrophys. J. 223, 1015 (1978).ADSCrossRefGoogle Scholar
  2. 2.
    F.W. Stecker, Astrophys. J. 223, 1032 (1978).ADSCrossRefGoogle Scholar
  3. 3.
    Yu. Ya. Zel’dovich, A. A. Klypin, M. Yu. Khlopov, and V. M. Chechetkin, Sov. J. Nucl. Phys. 31, 664 (1980).Google Scholar
  4. 4.
    J. Silk and M. Srednicki, Phys. Rev. Lett. 53, 624 (1984).ADSCrossRefGoogle Scholar
  5. 5.
    A. G. Doroshkevich and M. Yu. Khlopov, Sov. J. Nucl. Phys. 39, 551 (1984).Google Scholar
  6. 6.
    R. V. Konoplich and M. Yu. Khlopov, Phys. At. Nucl. 57, 425 (1994).Google Scholar
  7. 7.
    PAMELA Collab. (O. Adriani et al.), Nature 458, 607 (2009); arXiv: 0810.4995.Google Scholar
  8. 8.
    AMS Collab. (M. Aguilar et al.), Phys. Rev. Lett. 110, 141102 (2013).Google Scholar
  9. 9.
    M. Cirelli, E. Moulin, P. Panci, P. D. Serpico, and A. Viana, Phys. Rev. D 86, 083506 (2012); arXiv: 1205.5283 [astro-ph.CO].ADSCrossRefGoogle Scholar
  10. 10.
    S. Ando and K. Ishiwata, J. Cosmol. Astropart. Phys. 1505, 024 (2015); arXiv: 1502.02007 [astro-ph.CO].ADSCrossRefGoogle Scholar
  11. 11.
    W. Liu, X.-J. Bi, S.-J. Lin, and P.-F. Yin, Clin. Phys. C 41, 045104 (2017); arXiv: 1602.01012.Google Scholar
  12. 12.
    K. Belotsky, R. Budaev, A. Kirillov, and M. LaPetin, JCAP 1701, 021 (2017); arXiv: 1606.01271.ADSCrossRefGoogle Scholar
  13. 13.
    V. V. Alekseev et al., J. Phys.: Conf. Ser. 675, 012023 (2016).Google Scholar
  14. 14.
    V. V. Alekseev et al., J. Phys.: Conf. Ser. 675, 012026 (2016).Google Scholar
  15. 15.
    Fermi-LAT Collab. (M. Ackermann et al.), Phys. Rev. D 89, 042001 (2014); arXiv: 1310.0828 [astroph. HE].Google Scholar
  16. 16.
    Fermi-LAT Collab. (M. Ackermann et al.), Astrophys. J. 799, 86 (2015); arXiv: 1410.3696 [astroph. HE].Google Scholar
  17. 17.
    K. M. Belotsky, E. A. Esipova, and A. A. Kirillov, Phys. Lett. B 761, 81 (2016); arXiv: 1506.03094 [astro-ph.CO].ADSCrossRefGoogle Scholar
  18. 18.
    J. F. Navarro, C. S. Frenk, and S. D. M. White, Astrophys. J. 490, 493 (1997); astro-ph/9611107.ADSCrossRefGoogle Scholar
  19. 19.
    T. Sjostrand, S. Mrenna, and P. Z. Skands, Comput. Phys. Commun. 178, 852 (2008); arXiv: 0710.3820 [hep-ph].ADSCrossRefGoogle Scholar
  20. 20.
    The GALPROP Code for Cosmic-Ray Transport and Diffuse Emission Production. http://galprop.stanford.edu/.Google Scholar
  21. 21.
    H.-B. Jin, Y.-L. Wu, and Y.-F. Zhou, J. Cosmol. Astropart. Phys. 1509, 049 (2015), arXiv: 1410.0171 [hep-ph].ADSCrossRefGoogle Scholar
  22. 22.
    A. Ibarra, D. Tran, and C. Weniger, J. Cosmol. Astropart. Phys. 1001, 009 (2010), arXiv: 0906.1571 [hep-ph].ADSCrossRefGoogle Scholar
  23. 23.
    H. Gast and S. Schael, in Proceedings of 31st International Cosmic Ray Conference ICRC, Lódź, Poland, 2009. http://icrc2009.uni.lodz.pl/proc/pdf/icrc0338.pdf.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • V. V. Alekseev
    • 1
  • K. M. Belotsky
    • 2
  • Yu. V. Bogomolov
    • 1
  • R. I. Budaev
    • 2
  • O. A. Dunaeva
    • 1
  • A. A. Kirillov
    • 1
    • 2
  • A. V. Kuznetsov
    • 1
  • A. D. Lukyanov
    • 1
  • V. V. Malakhov
    • 2
  • A. G. Mayorov
    • 1
    • 2
  • M. A. Mayorova
    • 2
  • A. F. Mosichkin
    • 1
  • A. A. Okrugin
    • 1
  • S. A. Rodenko
    • 2
  • A. M. Shitova
    • 1
  1. 1.Demidov Yaroslavl State UniversityYaroslavlRussia
  2. 2.National Research Nuclear University MEPhIMoscowRussia

Personalised recommendations