Physics of Atomic Nuclei

, Volume 80, Issue 2, pp 285–298 | Cite as

Rapidity distributions of hadrons in the HydHSD hybrid model

Elementary Particles and Fields Theory


A multistage hybrid model intended for describing heavy-ion interactions in the energy region of the NICA collider under construction in Dubna is proposed. The model combines the initial, fast, interaction stage described by the model of hadron string dynamics (HSD) and the subsequent evolution that the expanding system formed at the first stage experiences at the second stage and which one treats on the basis of ideal hydrodynamics; after the completion of the second stage, the particles involved may still undergo rescattering (third interaction stage). The model admits three freeze-out scenarios: isochronous, isothermal, and isoenergetic. Generally, the HydHSD hybrid model developed in the present study provides fairly good agreement with available experimental data on proton rapidity spectra. It is shown that, within this hybrid model, the two-humped structure of proton rapidity distributions can be obtained either by increasing the freeze-out temperature and energy density or by more lately going over to the hydrodynamic stage. Although the proposed hybrid model reproduces rapidity spectra of protons, it is unable to describe rapidity distributions of pions, systematically underestimating their yield. It is necessary to refine the model by including viscosity effects at the hydrodynamic stage of evolution of the system and by considering in more detail the third interaction stage.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. D. Landau, Collection of Scientific Works (Nauka, Moscow, 1969), Vol. 2, p. 259 [in Russian]; Izv. Akad. Nauk SSSR, Ser. Fiz. 17, 51 (1953).Google Scholar
  2. 2.
    P. F. Kolb and U. Heinz, Quark–Gluon Plasma 3, Ed. by R. C. Hwa and X.-N. Wang (World Scientific, Singapore, 2004), p. 634. nucl-th/0305084.Google Scholar
  3. 3.
    U. W. Heinz and R. Snellings, Ann. Rev. Nucl. Part. Sci. 63, 123 (2013); arXiv: 1301.2826 [nucl-th].ADSCrossRefGoogle Scholar
  4. 4.
    C. Gale, S. Jeon, and B. Schenke, Int. J. Mod. Phys. A 28, 1340011 (2013).ADSCrossRefGoogle Scholar
  5. 5.
    S. Jeon and U. Heinz, arXiv: 1503.03931.Google Scholar
  6. 6.
    R. Derradi de Souza, T. Koide, and T. Kodama, Prog. Part. Nucl. Phys. 86, 35 (2016); arXiv: 1506.03863.ADSCrossRefGoogle Scholar
  7. 7.
    P. K. Kovtun, D. T. Son, and A. O. Starinets, Phys. Rev. Lett. 94, 111601 (2005).ADSCrossRefGoogle Scholar
  8. 8.
    H. Song and U. Heinz, Phys. Lett. B 658, 279 (2008).ADSCrossRefGoogle Scholar
  9. 9.
    H. Song and U. Heinz, J. Phys. G 36, 064033 (2009).ADSCrossRefGoogle Scholar
  10. 10.
    B. Schenke, S. Jeon, and C. Gale, Phys. Rev. Lett. 106, 042301 (2011).ADSCrossRefGoogle Scholar
  11. 11.
    C. Nonaka et al., Eur. Phys. J. C 17, 663 (2000).ADSCrossRefGoogle Scholar
  12. 12.
    S. A. Bass and A. Dumitru, Phys. Rev. C 61, 064909 (2000).ADSCrossRefGoogle Scholar
  13. 13.
    D. Teaney, J. Lauret, and E. V. Shuryak, Phys. Rev. Lett. 86, 4783 (2001). nucl-th/0110037.ADSCrossRefGoogle Scholar
  14. 14.
    H. Petersen et al., Phys. Rev. C 78, 044901 (2008).ADSCrossRefGoogle Scholar
  15. 15.
    H. Petersen et al., Phys. Rev. C 80, 054910 (2009); arXiv: 0903.0396.ADSCrossRefGoogle Scholar
  16. 16.
    Iu. A. Karpenko et al., J. Phys.: Conf. Ser. 509, 012067 (2014). arXiv: 1310.0702.Google Scholar
  17. 17.
    Iu. A. Karpenko et al., Phys. Rev. C 91, 064901 (2015). arXiv: 1502.01978.ADSCrossRefGoogle Scholar
  18. 18.
    A. N. Sissakian, A. S. Sorin, and V. D. Toneev, Conf. Proc. C 060726, 421 (2006); nucl-th/0608032.Google Scholar
  19. 19.
    B. Friman et al., Lect. Notes Phys. 814, 1 (2011).ADSCrossRefGoogle Scholar
  20. 20.
    Yu. B. Ivanov, V. N. Russkikh, and V. D. Toneev, Phys. Rev. C 73, 044904 (2006); nucl-th/0503088.ADSCrossRefGoogle Scholar
  21. 21.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 6: Fluid Mechanics (Nauka, Moscow, 1988; Pergamon, New York, 1987).Google Scholar
  22. 22.
    J. P. Boris and D. L. Book, J. Comput. Phys. A 11, 38 (1973)ADSCrossRefGoogle Scholar
  23. 22a.
    D. L. Book, J. P. Boris, and K. Hain, J. Comput. Phys. A 18, 248 (1975).ADSCrossRefGoogle Scholar
  24. 23.
    D. H. Rischke, S. Bernard, and J. A. Maruhn, Nucl. Phys. A 595, 346 (1995)ADSCrossRefGoogle Scholar
  25. 23a.
    D. H. Rischke, Y. Pürsün, and J. A. Maruhn, Nucl. Phys. A 595, 383 (1995); Nucl. Phys. A 596, 717(E) (1996).ADSCrossRefGoogle Scholar
  26. 24.
    A. V. Merdeev, Cand. Sci. (Phys. Math.) Dissertation (Kurchatov Inst., Moscow, 2011); L. M. Satarov, private commun.Google Scholar
  27. 25.
    L. M. Satarov, M. N. Dmitriev, and I. N. Mishustin, Phys. At. Nucl. 72, 1390 (2009).CrossRefGoogle Scholar
  28. 26.
    Particle Data Group (K. A. Olive et al.), Chin. Phys. C 38, 090001 (2014).CrossRefGoogle Scholar
  29. 27.
    W. Ehehalt and W. Cassing, Nucl. Phys. A 602, 449 (1996)ADSCrossRefGoogle Scholar
  30. 27a.
    J. Geiss, W. Cassing, and C. Greiner, Nucl. Phys. A 644, 107 (1998)ADSCrossRefGoogle Scholar
  31. 27b.
    W. Cassing and E. L. Bratkovskaya, Phys. Rep. 308, 65 (1999).ADSCrossRefGoogle Scholar
  32. 28.
    W. Cassing and E. L. Bratkovskaya, Nucl. Phys. A 831, 215 (2009); Phys. Rev. C 78, 034919 (2008).ADSCrossRefGoogle Scholar
  33. 29.
    D. Oliinychenko and H. Petersen, arXiv: 1508.04378.Google Scholar
  34. 30.
    V. V. Skokov and V. D. Toneev, Phys. At. Nucl. 70, 109 (2007).CrossRefGoogle Scholar
  35. 31.
    N. S. Amelin et al., Phys. Rev. C 74, 064901 (2006).ADSCrossRefGoogle Scholar
  36. 32.
    P. Huovinen and H. Petersen, Eur. Phys. J. A 48, 171 (2012).ADSCrossRefGoogle Scholar
  37. 33.
    F. Cooper and G. Frye, Phys. Rev. D 10, 186 (1974).ADSCrossRefGoogle Scholar
  38. 34.
    L. M. Satarov, I. N. Mishustin, A. V. Merdeev, and H. Stöcker, Phys. At. Nucl. 70, 1773 (2007); hepph/0611099.CrossRefGoogle Scholar
  39. 35.
    E-802 Collab. (L. Ahle et al.), Phys. Rev. C 57, R466(R) (1998).Google Scholar
  40. 36.
    E877 Collab. (J. Barrette et al.), Phys. Rev. C 62, 024901 (2000).ADSCrossRefGoogle Scholar
  41. 37.
    E917 Collab. (B. B. Back et al.), Phys. Rev. Lett. 86, 1970 (2001).ADSCrossRefGoogle Scholar
  42. 38.
    NA49 Collab. (T. Anticic et al.), Phys. Rev. C 83, 014901 (2011).ADSCrossRefGoogle Scholar
  43. 39.
    NA49 Collab. (T. Anticic et al.), Phys. Rev. C 69, 024902 (2004).ADSCrossRefGoogle Scholar
  44. 40.
    E-802 Collab. (L. Ahle et al.), Phys. Rev. C 59, 2173 (1999).ADSCrossRefGoogle Scholar
  45. 41.
    E802 Collab (Y. Akiba et al.) et al., Nucl. Phys. A 610, 139 (1996).ADSCrossRefGoogle Scholar
  46. 42.
    NA49 Collab. (S. V. Afanasiev et al.), Phys. Rev. C 66, 054902 (2002).ADSCrossRefGoogle Scholar
  47. 43.
    G. S. F. Stephans, in Proceedings of the RHIC/AGS Annual Users’ Meeting 2007, Brookhaven, 18–22 Jun. 2007. Scholar
  48. 44.
    W. Cassing et al., arXiv: 1510.04120.Google Scholar
  49. 45.
    J. Sollfrank et al., Phys. Rev. C 55, 392 (1997); nuclth/9607029.ADSCrossRefGoogle Scholar
  50. 46.
    T. Hirano, J. Phys. G 30, S845 (2004).ADSCrossRefGoogle Scholar
  51. 47.
    E895 Collab. (J. L. Klay et al.), Phys. Rev. Lett. 88, 102301 (2002).ADSCrossRefGoogle Scholar
  52. 48.
    E895 Collab. (J. L. Klay et al.), Phys. Rev. C 68, 054905 (2003).ADSCrossRefGoogle Scholar
  53. 49.
    A. Andronic, P. Braun-Munzinger, and J. Stachel, Nucl. Phys. A 772, 167 (2006).ADSCrossRefGoogle Scholar
  54. 50.
    V. N. Russkikh et al., Nucl. Phys. A 572, 749 (1994).ADSCrossRefGoogle Scholar
  55. 51.
    Q. Li et al., arXiv: 1603.09081; arXiv: 1604.01098.Google Scholar
  56. 52.
    Yu. B. Ivanov, Phys. Rev. C 87, 064904 (2013); arXiv: 1302.5766.ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Joint Institute for Nuclear ResearchDubna, Moscow oblastRussia
  2. 2.Institute of Applied PhysicsMoldavian Academy of SciencesChisinauRepublic of Moldova

Personalised recommendations