Physics of Atomic Nuclei

, Volume 79, Issue 13, pp 1525–1535 | Cite as

Recent applications of nuclear track emulsion technique

Technologies of Nuclear Materials
  • 20 Downloads

Abstract

A survey of recent results obtained using the nuclear track emulsion (NTE) technique in low energy applications is given. NTE irradiation with 60 MeV 8He nuclei provides identification of their decays at stopping, evaluation of the possibility of α range spectrometry, and observation of drift of thermalized 8Не atoms. Correlations of α particles studied in 12С → 3α splitting induced by 14.1 MeV neutrons indicate the presence of a superposition of 0+ and 2+ states of the 8Be nucleus in the ground state of 12С. Angular correlations of fragments are studied in boron-enriched NTE, and the prospects of NTE application in radioactivity and nuclear fission research are discussed. It is proposed to use an automated microscope to search for collinear tripartition of heavy nuclei implanted in NTE. Surface irradiation of NTE by a 252Cf source is started. Planar events containing fragment pairs and long range α particles, as well as fragment triples, are studied. NTE samples are calibrated using Kr and Xe ions with an energy of 1.2 and 3 A MeV.

Keywords

nuclear track emulsion α particles neutrons heavy ions automated microscope fission cyclotron 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. F. Powell, P. H. Fowler, and D. H. Perkins, Study of Elementary Particles by the Photographic Method (Pergamon, London, 1959).Google Scholar
  2. 2.
    W. H. Barkas, Nuclear Research Emulsions (Academic, New York, London, 1963).Google Scholar
  3. 3.
    Y. Goldschmidt-Cremont, Ann. Rev. Nucl. Sci., 141 (1953).Google Scholar
  4. 4.
    The BECQUEREL Project. http://becquerel.jinr.ru/.Google Scholar
  5. 5.
    P. I. Zarubin, Lect. Notes Phys. 875 (3), 51 (2014).ADSCrossRefGoogle Scholar
  6. 6.
    Slavich Company JSC. http://www.newslavich.com/.Google Scholar
  7. 7.
    D. A. Artemenkov, A. A. Bezbakh, V. Bradnova, M. S. Golovkov, A. V. Gorshkov, P. I. Zarubin, I. G. Zarubina, G. Kaminski, N. K. Kornegrutsa, S. A. Krupko, K. Z. Mamatkulov, R. R. Kattabekov, V. V. Rusakova, R. S. Slepnev, R. Stanoeva, S. V. Stepantsov, A. S. Fomichev, and V. Chudoba, Phys. Part. Nucl. Lett. 10, 415 (2013).CrossRefGoogle Scholar
  8. 8.
    D. A. Artemenkov et al., Few-Body Syst. 55, 733736 (2014).CrossRefGoogle Scholar
  9. 9.
    P. Zarubin, EPJ Web Conf. 66, 11044 (2014).CrossRefGoogle Scholar
  10. 10.
    R. R. Kattabekov, K. Z. Mamatkulov, S. S. Alikulov, D. A. Artemenkov, R. N. Bekmirzaev, V. Bradnova, P. I. Zarubin, I. G. Zarubina, N. V. Kondratieva, N. K. Kornegrutsa, D. O. Krivenkov, A. I. Malakhov, K. Olimov, N. G. Peresadko, N. G. Polukhina, et al., Phys. At. Nucl. 76, 1219 (2013).CrossRefGoogle Scholar
  11. 11.
    D. A. Artemenkov, V. Bradnova, A. A. Zaitsev, P. I. Zarubin, I. G. Zarubina, R. R. Kattabekov, K. Z. Mamatkulov, and V. V. Rusakova, Phys. At. Nucl. 78, 579 (2015).CrossRefGoogle Scholar
  12. 12.
    D. V. Kamanin and Y. V. Pyatkov, Lect. Notes Phys. 875 (3), 184 (2014).ADSGoogle Scholar
  13. 13.
    K. Z. Mamatkulov et al., Phys. Proc. 74, 59 (2015).ADSCrossRefGoogle Scholar
  14. 14.
    E. W. Titterton and T. A. Brinkley, Nature 187, 228 (1960).ADSCrossRefGoogle Scholar
  15. 15.
    M. L. Muga, H. R. Bowman, and S. G. Thompson, Phys. Rev. 121, 271 (1961).ADSCrossRefGoogle Scholar
  16. 16.
    D. A. Artemenkov, V. Bradnova, A. A. Zaitsev, P. I. Zarubin, I. G. Zarubina, R. R. Kattabekov, N. K. Kornegrutsa, K. Z. Mamatkulov, P. A. Rukoyatkin, V. V. Rusakova, and R. Stanoeva, Phys. At. Nucl. 78, 794 (2015).CrossRefGoogle Scholar
  17. 17.
    F. Ajzenberg-Selove, Nucl. Phys. A 490, 1 (1988); TUNL—Nuclear Data Evaluation Project. http://www.tunl.duke.edu/NuclData/.ADSCrossRefGoogle Scholar
  18. 18.
    The BECQUEREL Project. http://becquerel. jinr.ru/miscellanea/8He/8He.html.Google Scholar
  19. 19.
    F. Ziegler, J. P. Biersack, and M. D. Ziegler, SRIM–the Stopping and Range of Ions in Matter. http://srim.org/.Google Scholar
  20. 20.
    V. M. Bystritsky, V. V. Gerasimov, V. G. Kadyshevsky, A. P. Kobzev, A. R. Krylov, A. A. Nozdrin, V. L. Rapatsky, Yu. N. Rogov, A. B. Sadovsky, A. V. Salamatin, M. G. Sapozhnikov, A. N. Sissakian, V. M. Slepnev, N. I. Zamyatin, and E. V. Zubarev, Phys. Part. Nucl. Lett. 6, 505 (2009).CrossRefGoogle Scholar
  21. 21.
    T. Yamada, Y. Funaki, H. Horiuchi, G. Roepke, P. Schuck, and A. Tohsaki, Lect. Notes Phys. 848 (1), 102 (2012).Google Scholar
  22. 22.
    Image Processing and Analyses in JAVA. http://rsb.info.nih.gov/ij/.Google Scholar
  23. 23.
    Microscope HSP-1000. http://www.odz.ujf.cas.cz/ home/resources/microscope-hsp-1000.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.Veksler and Baldin Laboratory of High Energy PhysicsJoint Institute for Nuclear ResearchDubnaRussia
  2. 2.Lebedev Physical InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations