Physics of Atomic Nuclei

, Volume 79, Issue 7, pp 1125–1136 | Cite as

Tokamak DEMO-FNS: Concept of magnet system and vacuum chamber

  • E. A. Azizov
  • S. S. Ananyev
  • V. A. Belyakov
  • E. N. Bondarchuk
  • A. A. Voronova
  • A. A. Golikov
  • P. R. Goncharov
  • A. Yu. Dnestrovskij
  • E. R. Zapretilina
  • D. P. Ivanov
  • A. A. Kavin
  • I. V. Kedrov
  • A. V. Klischenko
  • B. N. Kolbasov
  • S. V. Krasnov
  • A. I. Krylov
  • V. A. Krylov
  • E. G. Kuzmin
  • B. V. Kuteev
  • A. N. Labusov
  • V. E. Lukash
  • I. I. Maximova
  • S. Yu. Medvedev
  • A. B. Mineev
  • V. P. Muratov
  • V. S. Petrov
  • I. Yu. Rodin
  • V. Yu. Sergeev
  • A. V. Spitsyn
  • V. N. Tanchuk
  • V. A. Trofimov
  • R. R. Khayrutdinov
  • M. V. Khokhlov
  • Yu. S. Shpanskiy
Article

Abstract

The level of knowledge accumulated to date in the physics and technologies of controlled thermonuclear fusion (CTF) makes it possible to begin designing fusion—fission hybrid systems that would involve a fusion neutron source (FNS) and which would admit employment for the production of fissile materials and for the transmutation of spent nuclear fuel. Modern Russian strategies for CTF development plan the construction to 2023 of tokamak-based demonstration hybrid FNS for implementing steady-state plasma burning, testing hybrid blankets, and evolving nuclear technologies. Work on designing the DEMO-FNS facility is still in its infancy. The Efremov Institute began designing its magnet system and vacuum chamber, while the Kurchatov Institute developed plasma-physics design aspects and determined basic parameters of the facility. The major radius of the plasma in the DEMO-FNS facility is R = 2.75 m, while its minor radius is a = 1 m; the plasma elongation is k95 = 2. The fusion power is PFUS = 40 MW. The toroidal magnetic field on the plasma-filament axis is Bt0 = 5 T. The plasma current is Ip = 5 MA. The application of superconductors in the magnet system permits drastically reducing the power consumed by its magnets but requires arranging a thick radiation shield between the plasma and magnet system. The central solenoid, toroidal-field coils, and poloidal-field coils are manufactured from, respectively, Nb3Sn, NbTi and Nb3Sn, and NbTi. The vacuum chamber is a double-wall vessel. The space between the walls manufactured from 316L austenitic steel is filled with an iron—water radiation shield (70% of stainless steel and 30% of water).

Keywords

fusion neutron source tokamak fusion fission hybrid facility superconducting magnet system vacuum chamber radiation shield 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. A. Azizov, G. G. Gladush, A. V. Lopatkin, and I. B. Lukasevich, At. Energy 110, 93 (2011).CrossRefGoogle Scholar
  2. 2.
    E. Velikhov and E. Azizov, in Proceedings of the International Workshop on Magnetic Fusion Energy (MFE) Roadmapping in the ITER Era, September 7–10, 2011, Princeton, NJ, USA.Google Scholar
  3. 3.
    E. P. Velikhov, in Proceedings of the 25 IAEA Fusion Energy Conference, St. Petersburg, Russia, Oct. 13–18, 2014, O/3.Google Scholar
  4. 4.
    B. V. Kuteev et al., Nucl. Fusion 55 (2015, in press).Google Scholar
  5. 5.
    B. V. Kuteev et al., Update of Russian Federation Roadmap. http://www-naweb.iaea.org/napc/physics/ meetings/TM45256/talks/Kuteev.pdf.Google Scholar
  6. 6.
    A. Yu. Dnestrovskij, B. V. Kuteev, A. S. Bykov, A. A. Ivanov, V. E. Lukash, S. Yu. Medvedev, V. Yu. Sergeev, D. Yu. Sychugov, and R. R. Khayrutdinov, Nucl. Fusion 55, 063007 (2015). doi 10.1088/0029-5515/55/6/063007ADSCrossRefGoogle Scholar
  7. 7.
    V. A. Belyakov and A. B. Mineev, Tokamak: Euqilibrium Plasma Configurations, The School-Book (SPb. Gos. Univ., St. Petersburg, 2010) [in Russian].Google Scholar
  8. 8.
    A. A. Ivanov, R. R. Khayrutdinov, S. Yu. Medvedev, and Yu. Yu. Poshekhonov, in Proceedings of the 32nd European Physical Society Conference on Plasma Physics, Tarragona, Spain, 2005, 29C P-5.063. http://epsppd.epfl.ch/Tarragona/pdf/P5_063.pdf.Google Scholar
  9. 9.
    A. A. Ivanov, A. A. Martynov, S. Yu. Medvedev, Yu. Yu. Poshekhonov, S. V. Konovalov, and R. R. Khairutdinov, Vopr. At. Nauki Tekh., Ser. Termoyad. Sint. 37 (1), 80 (2014).Google Scholar
  10. 10.
    D. Yu. Sychugov, Vopr. At. Nauki Tekh., Ser. Termoyad. Sint., No. 4, 85 (2008).Google Scholar
  11. 11.
    D. Yu. Sychugov, Vopr. At. Nauki Tekh., Ser. Termoyad. Sint., No. 3, 67 (2009).Google Scholar
  12. 12.
    R. R. Khayrutdinov and V. E. Lukash, J. Comput. Phys. 109, 193 (1993). http://www.sciencedirect.com/science/article/pii/S0021999183712118.ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • E. A. Azizov
    • 1
  • S. S. Ananyev
    • 1
  • V. A. Belyakov
    • 2
    • 4
  • E. N. Bondarchuk
    • 2
  • A. A. Voronova
    • 2
  • A. A. Golikov
    • 1
  • P. R. Goncharov
    • 3
  • A. Yu. Dnestrovskij
    • 1
  • E. R. Zapretilina
    • 2
  • D. P. Ivanov
    • 1
  • A. A. Kavin
    • 2
  • I. V. Kedrov
    • 2
  • A. V. Klischenko
    • 1
  • B. N. Kolbasov
    • 1
  • S. V. Krasnov
    • 2
  • A. I. Krylov
    • 1
  • V. A. Krylov
    • 2
  • E. G. Kuzmin
    • 2
  • B. V. Kuteev
    • 1
  • A. N. Labusov
    • 2
  • V. E. Lukash
    • 1
  • I. I. Maximova
    • 2
  • S. Yu. Medvedev
    • 1
  • A. B. Mineev
    • 2
    • 4
  • V. P. Muratov
    • 2
  • V. S. Petrov
    • 1
  • I. Yu. Rodin
    • 2
  • V. Yu. Sergeev
    • 3
  • A. V. Spitsyn
    • 1
  • V. N. Tanchuk
    • 2
  • V. A. Trofimov
    • 2
  • R. R. Khayrutdinov
    • 1
  • M. V. Khokhlov
    • 2
  • Yu. S. Shpanskiy
    • 1
  1. 1.National Research Center Kurchatov InstituteMoscowRussia
  2. 2.D.V. Efremov Scientific Research Institute of Electrophysical ApparatusSt. PetersburgRussia
  3. 3.Peter the Great St. Petersburg Polytechnic UniversitySt. PetersburgRussia
  4. 4.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations