Physics of Atomic Nuclei

, Volume 79, Issue 6, pp 1067–1123 | Cite as

Shells, orbit bifurcations, and symmetry restorations in Fermi systems

Nuclei Theory

Abstract

The periodic-orbit theory based on the improved stationary-phase method within the phase-space path integral approach is presented for the semiclassical description of the nuclear shell structure, concerning themain topics of the fruitful activity ofV.G. Soloviev. We apply this theory to study bifurcations and symmetry breaking phenomena in a radial power-law potential which is close to the realistic Woods–Saxon one up to about the Fermi energy. Using the realistic parametrization of nuclear shapes we explain the origin of the double-humped fission barrier and the asymmetry in the fission isomer shapes by the bifurcations of periodic orbits. The semiclassical origin of the oblate–prolate shape asymmetry and tetrahedral shapes is also suggested within the improved periodic-orbit approach. The enhancement of shell structures at some surface diffuseness and deformation parameters of such shapes are explained by existence of the simple local bifurcations and new non-local bridge-orbit bifurcations in integrable and partially integrable Fermi-systems. We obtained good agreement between the semiclassical and quantum shell-structure components of the level density and energy for several surface diffuseness and deformation parameters of the potentials, including their symmetry breaking and bifurcation values.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Gutzwiller, J. Math. Phys. 12, 343 (1971); Chaos in Classical and Quantum Mechanics (Springer, New York, 1990).ADSCrossRefGoogle Scholar
  2. 2.
    R. B. Balian and C. Bloch, Ann. Phys. (N.Y.) 69, 76 (1972).ADSCrossRefGoogle Scholar
  3. 3.
    V. M. Strutinsky, Nukleonika 20, 679 (1975)Google Scholar
  4. 3a.
    V. M. Strutinsky and A. G. Magner, Sov. J. Part. Nucl. 7, 138 (1976).Google Scholar
  5. 4.
    M. V. Berry and M. Tabor, Proc. R. Soc. London Ser. A 349, 101 (1976); 356, 375 (1977).ADSCrossRefGoogle Scholar
  6. 5.
    V. M. Strutinsky, A. G. Magner, S. R. Ofengenden, and T. Døssing, Z. Phys. A 283, 269 (1977).ADSCrossRefGoogle Scholar
  7. 6.
    S. C. Creagh, J. M. Robbins, and R. G. Littlejohn, Phys. Rev. A 42, 1907 (1990)ADSMathSciNetCrossRefGoogle Scholar
  8. 6a.
    S. C. Creagh and R. G. Littlejohn, Phys. Rev. A 44, 836 (1991); J. Phys. A 25, 1643 (1992).ADSMathSciNetCrossRefGoogle Scholar
  9. 7.
    M. Brack and R. K. Bhaduri, Semiclassical Physics, rev. ed. (Westview Press, Boulder, 2003).MATHGoogle Scholar
  10. 8.
    A. G. Magner, I. S. Yatsyshyn, K. Arita, and M. Brack, Phys. Atom. Nucl. 74, 1445 (2011).ADSCrossRefGoogle Scholar
  11. 9.
    V. M. Strutinsky, Nucl. Phys. A 95, 420 (1967); 122, 1 (1968).ADSCrossRefGoogle Scholar
  12. 10.
    M. Brack, J. Damgaard, A. S. Jensen, et al., Rev. Mod. Phys. 44, 320 (1972).ADSCrossRefGoogle Scholar
  13. 11.
    W. D. Myers and W. J. Swiatecki, Ann. Phys. (N.Y.) 55, 395 (1969); 84, 186 (1974).ADSCrossRefGoogle Scholar
  14. 12.
    M. Brack, C. Guet, and H.-B. Håkansson, Phys. Rep. 123, 275 (1985).ADSCrossRefGoogle Scholar
  15. 13.
    A. B. Migdal, The Finite Fermi–System Theory and Properties of Atomic Nuclei (Intersci., New York, 1967; Nauka, Moscow, 1983).Google Scholar
  16. 14.
    V. A. Khodel and E. E. Saperstein, Phys. Rep. 92, 183 (1982).ADSCrossRefGoogle Scholar
  17. 15.
    L. D. Landau, Sov. Phys. JETP 3, 920 (1956); 8, 70 (1959).Google Scholar
  18. 16.
    A. A. Abrikosov and I. M. Khalatnikov, Rep. Prog. Phys. 22, 329 (1959).ADSCrossRefGoogle Scholar
  19. 17.
    A. Bohr and B. Mottelson, Nuclear Structure (Benjamin, New York, 1975), Vol. 2.MATHGoogle Scholar
  20. 18.
    P. Ring and P. Schuck, The Nuclear Many–Body Problem (Springer, New York, Heisenberg, Berlin, 1980).CrossRefGoogle Scholar
  21. 19.
    H. Hofmann, The Physics of Warm Nuclei with Analogies to Mesoscopic Systems (Oxford, Univ. Press, Oxford, 2008).CrossRefGoogle Scholar
  22. 20.
    V. V. Pashkevich and S. Frauendorf, Yad. Fiz. 20, 1122 (1974) [Sov. J. Nucl. Phys. 20, 588 (1974)].Google Scholar
  23. 21.
    I. N. Mikhailov, K. Neergard, V. V. Pashkevich, and S. Frauendorf, Sov. J. Part. Nucl. 8, 550 (1977).Google Scholar
  24. 22.
    S. Frauendorf, arXiv: 1209.5816 [nucl-th].Google Scholar
  25. 23.
    A. G. Magner, V. M. Kolomietz, and V. M. Strutinskiĭ, Sov. J. Nucl. Phys. 28, 764 (1978).Google Scholar
  26. 24.
    V. M. Kolomiets, A. G. Magner, and M. Strutinskiĭ, Sov. J. Nucl. Phys. 29, 758 (1979).Google Scholar
  27. 25.
    A. G. Magner, V. M. Kolomiets, and V. M. Strutinsky, Bull. Acad. Sci. USSR, Phys. Ser. 43, 142 (1979).Google Scholar
  28. 26.
    K. Richter, D. Ulmo, and R. A. Jalabert, Phys. Rep. 276, 1 (1996).ADSCrossRefGoogle Scholar
  29. 27.
    S. Frauendorf, V. M. Kolomietz, A. G. Magner, and A. I. Sanzhur, Phys. Rev. B 58, 5622 (1998).ADSCrossRefGoogle Scholar
  30. 28.
    M. A. Deleplanque, S. Frauendorf, V. V. Pashkevich, et al., Phys. Rev. C 69, 044309 (2004).ADSCrossRefGoogle Scholar
  31. 29.
    A. G. Magner, A. S. Sitdikov, A. A. Khamzin, et al., Nucl. Phys. At. Energy 10, 239 (2009); Int. J. Mod. Phys. E 19, 735 (2010); Phys. Atom. Nucl. 73, 1398 (2010).Google Scholar
  32. 30.
    A. G. Magner, A. S. Sitdikov, A. A. Khamzin, and J. Bartel, Phys. Rev. C 81, 064302 (2010).ADSCrossRefGoogle Scholar
  33. 31.
    A. G. Magner, D. V. Gorpinchenko, and J. Bartel, Phys. Atom. Nucl. 77, 1229 (2014).CrossRefGoogle Scholar
  34. 32.
    D. V. Gorpinchenko, A. G. Magner, J. Bartel, and J. P. Blocki, Phys. Scr. 90, 114008 (2015).ADSCrossRefGoogle Scholar
  35. 33.
    D. V. Gorpinchenko, A. G. Magner, J. Bartel, and J. P. Blocki, Phys. Rev. C 93, 024304 (2016).ADSCrossRefGoogle Scholar
  36. 34.
    S. T. Belyaev and V. G. Zelevinsky, Sov. Phys. Usp. 28, 854 (1985).ADSCrossRefGoogle Scholar
  37. 35.
    V. G. Solovjov, Fiz. Elem. Chastits At. Yadra 9, 580 (1978).Google Scholar
  38. 36.
    L. A. Molov and V. G. Soloviev, Fiz. Elem. Chastits At. Yadra 11, 301 (1980).Google Scholar
  39. 37.
    V. G. Soloviev, Theory of Atomic Nucleus. Nuclear Models (Energoizdat, Moscow, 1981) [in Russian].Google Scholar
  40. 38.
    A. I. Vdovin and V. G. Soloviev, Fiz. Elem. Chastits At. Yadra 14, 237 (1983).Google Scholar
  41. 39.
    A. I. Vdovin and V. G. Soloviev, Fiz. Elem. Chastits At. Yadra 14, 1380 (1983).Google Scholar
  42. 40.
    A. I. Vdovin, V. V. Voronov, V. G. Soloviev, and Ch. Stojanov, Fiz. Elem. Chastits. At. Yadra 16, 245 (1985).Google Scholar
  43. 41.
    V. G. Soloviev, Theory of Atomic Nuclei: Quasiparticles and Phonons (Institute of Physics, Bristol; Philadelphia, 1992).Google Scholar
  44. 42.
    V. G. Soloviev, Structure of Even Deformed Nuclei (Nauka, Moscow, 1974) [in Russian].Google Scholar
  45. 43.
    V. G. Solovjov, Theory of Complex Nuclei (Pergamon Press, New York, 1976).Google Scholar
  46. 44.
    V. G. Soloviev, Nucl. Phys. A 9, 655 (1958).CrossRefGoogle Scholar
  47. 45.
    S. T. Belyaev, Sov. Phys. JETP 13, 470 (1961).Google Scholar
  48. 46.
    V. G. Solovjov, Effect of Superconducting Pairing Correlations on Nuclear Properties; in Selected Topics in Nuclear Theory (IAEA, Vienna, 1963).Google Scholar
  49. 47.
    S. T. Belyaev and V. G. Zelevinskiĭ, Sov. J. Nucl. Phys. 11, 416 (1970); 16, 657 (1973); 17, 269 (1973).Google Scholar
  50. 48.
    D. Vautherin and D. M. Brink, Phys. Rev. C 5, 626 (1972).ADSCrossRefGoogle Scholar
  51. 49.
    M. Brack and P. Quentin, Nucl. Phys. A 361, 35 (1981).ADSCrossRefGoogle Scholar
  52. 50.
    V. I. Abrosimov, D. M. Brink, A. Delafiore, and F. Matera, Nucl. Phys. A 864, 38 (2011); and the works cited therein.ADSCrossRefGoogle Scholar
  53. 51.
    H. Hofmann, F. A. Ivanyuk, and S. Yamaji, Nucl. Phys. A 598 187 (1996).ADSCrossRefGoogle Scholar
  54. 52.
    F. A. Ivanyuk, H. Hofmann, V. V. Pashkevich, and S. Yamaji, Phys. Rev. C 55, 1730 (1997).ADSCrossRefGoogle Scholar
  55. 53.
    A. G. Magner, S. M. Vydrug-Vlasenko, and H. Hofmann, Nucl. Phys. A 524, 31 (1991); Izv. Akad. Nauk SSSR, Ser. Fiz. 54, 148 (1990).ADSCrossRefGoogle Scholar
  56. 54.
    A. M. Gzhebinsky, A. G. Magner, and S. N. Fedotkin, Phys. Rev. C 76, 064315 (2007).ADSCrossRefGoogle Scholar
  57. 55.
    A. G. Magner, A. M. Gzhebinsky, and S. N. Fedotkin, Yad. Fiz. 70, 677, 1910 (2007) [Phys. Atom. Nucl. 70, 647, 1859 (2007)].Google Scholar
  58. 56.
    J. P. Blocki, A. G. Magner, and I. S. Yatsyshyn, Int. J. Mod. Phys. E 21, 1250034 (2012).ADSCrossRefGoogle Scholar
  59. 57.
    J. P. Blocki and A. G. Magner, Phys. Scr. T 154, 014006 (2013).ADSCrossRefGoogle Scholar
  60. 58.
    G. Lazzari, H. Nishioka, E. Vigezzi, and R. A. Broglia, Phys. Rev. B 53, 1064 (1996).ADSCrossRefGoogle Scholar
  61. 59.
    A. G. Magner, S. N. Fedotkin, F. A. Ivanyuk et al., Ann. Phys. (Berlin) 509, 555 (1997).ADSCrossRefGoogle Scholar
  62. 60.
    M. Brack, S. M. Reimann, and M. Sieber, Phys. Rev. Lett. 79, 1817 (1997).ADSCrossRefGoogle Scholar
  63. 61.
    A. G. Magner, S. N. Fedotkin, K. Arita, et al., Phys. Rev. E 63, 065201(R) (2001).ADSCrossRefGoogle Scholar
  64. 62.
    A. G. Magner, K. Arita, S. N. Fedotkin, and K. Matsuyanagi, Prog. Theor. Phys. 108, 853 (2002).ADSCrossRefGoogle Scholar
  65. 63.
    A. G. Magner, Nucl. Phys. At. Energy 11, 227 (2010).ADSGoogle Scholar
  66. 64.
    A. G. Magner, Yad. Fiz. 28, 1477 (1978) [Sov. J. Nucl. Phys. 28, 759 (1978)].Google Scholar
  67. 65.
    M. V. Fedoryuk, Zh. Vychisl. Mat. Mat. Fiz. 2(1), 145 (1962); 4(4), 671 (1964) [Sov. J. Comput. Math. Math. Phys. 2(1), 152 (1963); 4(4), 66 (1964)].Google Scholar
  68. 66.
    M. P. Maslov, Theor. Math. Phys. 2, 21 (1970).CrossRefGoogle Scholar
  69. 67.
    M. V. Fedoryuk, The Saddle-Point Method (Nauka, Moscow, 1977) [in Russian].MATHGoogle Scholar
  70. 68.
    C. Chester, B. Friedmann, and F. Ursell, Proc. Cambridge Philos. Soc. 53, 599 (1957).ADSMathSciNetCrossRefGoogle Scholar
  71. 69.
    A. G. Magner, K. Arita, and S. N. Fedotkin, Prog. Theor. Phys. 115, 523 (2006).ADSCrossRefGoogle Scholar
  72. 70.
    A. G. Magner, S. N. Fedotkin, K. Arita, et al., Prog. Theor. Phys. 102, 551 (1999).ADSCrossRefGoogle Scholar
  73. 71.
    M. V. Koliesnik, Ya. D. Krivenko-Emetov, A. G. Magner, K. Arita, and M. Brack, Phys. Scr. 90, 114011 (2015).ADSCrossRefGoogle Scholar
  74. 72.
    A. M. Ozorio de Almeida, Hamiltonian Systems: Chaos and Quantization (Cambridge Univ. Press, Cambridge, 1988).MATHGoogle Scholar
  75. 73.
    D. Ullmo, M. Grinberg, and S. Tomsovic, Phys. Rev. E 54, 136 (1996).ADSCrossRefGoogle Scholar
  76. 74.
    S. C. Creagh, Ann. Phys. (N.Y.) 248, 60 (1996).ADSMathSciNetCrossRefGoogle Scholar
  77. 75.
    M. Sieber, J. Phys. A 30, 4563 (1997).ADSMathSciNetCrossRefGoogle Scholar
  78. 76.
    M. Brack, J. Blaschke, S. C. Creagh, et al., Z. Phys. D 40, 276 (1997).ADSCrossRefGoogle Scholar
  79. 77.
    H. Schomerus and M. Sieber, J. Phys. A 30, 4537 (1997)ADSMathSciNetCrossRefGoogle Scholar
  80. 77a.
    M. Sieber and H. Schomerus, J. Phys. A 31, 165 (1998).ADSCrossRefGoogle Scholar
  81. 78.
    H. Schomerus, J. Phys. A 31, 4167 (1998).ADSMathSciNetCrossRefGoogle Scholar
  82. 79.
    M. Brack, P. Meier, and K. Tanaka, J. Phys. A 32, 331 (1999).ADSMathSciNetCrossRefGoogle Scholar
  83. 80.
    M. Brack, Found. Phys. 31, 209 (2001); nlin.CD/0006034.MathSciNetCrossRefGoogle Scholar
  84. 81.
    M. Brack, M. Mehta, and K. Tanaka, J. Phys. A 34, 8199 (2001).ADSMathSciNetCrossRefGoogle Scholar
  85. 82.
    J. Kaidel and M. Brack, Phys. Rev. E 70, 016206 (2004).ADSCrossRefGoogle Scholar
  86. 83.
    K. Arita and M. Brack, J. Phys. A 41, 385207 (2008).ADSMathSciNetCrossRefGoogle Scholar
  87. 84.
    K. Arita, Phys. Rev. C 86, 034317 (2012).ADSCrossRefGoogle Scholar
  88. 85.
    S. N. Fedotkin, A. G. Magner, and M. Brack, Phys. Rev. E 77, 066219 (2008).ADSMathSciNetCrossRefGoogle Scholar
  89. 86.
    K. Arita, Int. J. Mod. Phys. E 13, 191 (2004).ADSCrossRefGoogle Scholar
  90. 87.
    A. G. Magner, A. A. Vlasenko, and K. Arita, Phys. Rev. E 87, 062916 (2013).ADSCrossRefGoogle Scholar
  91. 88.
    M. Brack and K. Tanaka, Phys. Rev. E 77, 046205 (2008).ADSMathSciNetCrossRefGoogle Scholar
  92. 89.
    M. Brack, R. K. Bhaduri, J. Law, and M. V. N. Murthy, Phys. Rev. Lett. 70, 568 (1993).ADSCrossRefGoogle Scholar
  93. 90.
    J. P. Blocki, A. G. Magner, and I. S. Yatsyshyn, Nucl. Phys. At. Energy 11, 239 (2010).Google Scholar
  94. 91.
    J. P. Blocki, A. G. Magner, and I. S. Yatsyshyn, Int. J. Mod. Phys. E 20, 292 (2011).ADSCrossRefGoogle Scholar
  95. 92.
    J. P. Blocki and A. G. Magner, Phys. Rev. C 85, 064311 (2012).ADSCrossRefGoogle Scholar
  96. 93.
    M. Brack, J. Kaidel, P. Winkler, and S. N. Fedotkin, Few-Body Syst. 38, 147 (2006).ADSCrossRefGoogle Scholar
  97. 94.
    C. Gustafsson, P. Möller, and S. G. Nilsson, Phys. Lett. B 34, 349 (1971).ADSCrossRefGoogle Scholar
  98. 95.
    S. Cohen and W. J. Swiatecki, Ann. Phys. (N.Y.) 22, 406 (1963).ADSCrossRefGoogle Scholar
  99. 96.
    P. J. Richens, J. Phys. A. 15, 2101 (1982).ADSMathSciNetCrossRefGoogle Scholar
  100. 97.
    H. Frisk, Nucl. Phys. A 511, 309 (1990).ADSMathSciNetCrossRefGoogle Scholar
  101. 98.
    I. Hamamoto and B. R. Mottelson, Phys. Rev. C 79, 034317 (2009).ADSCrossRefGoogle Scholar
  102. 99.
    N. Tajima and N. Suzuki, Phys. Rev. C 64, 037301 (2001)ADSCrossRefGoogle Scholar
  103. 99a.
    N. Tajima, Y. R. Shimizu, and N. Suzuki, Prog. Theor. Phys. Suppl. 146, 628 (2002).ADSCrossRefGoogle Scholar
  104. 100.
    S. Takahara, N. Onishi, Y. R. Shimizu, and N. Tajima, Phys. Lett. B 702, 429 (2011)ADSCrossRefGoogle Scholar
  105. 100a.
    S. Takahara, N. Tajima, and Y. R. Shimizu, Phys. Rev. C 86, 064323 (2012).ADSCrossRefGoogle Scholar
  106. 101.
    K. Arita, to appear in Phys. Scr. (2016).Google Scholar
  107. 102.
    P. A. Butler and W. Nazarewicz, Rev. Mod. Phys. 68, 349 (1996).ADSCrossRefGoogle Scholar
  108. 103.
    J. Blocki et al., Ann. Phys. (N.Y.) 113, 330 (1978).ADSCrossRefGoogle Scholar
  109. 104.
    J. Blocki, J. Skalski, and W. J. Swiatecki, Nucl. Phys. A 594, 137 (1995)ADSCrossRefGoogle Scholar
  110. 104a.
    J. Blocki, J.-J. Shi, W. J. Swiatecki, Nucl. Phys. A 554, 387 (1993)ADSCrossRefGoogle Scholar
  111. 104b.
    C. Jarzynski and W. J. Swiatecki, Nucl. Phys. A 552, 1 (1993)ADSCrossRefGoogle Scholar
  112. 104c.
    P. Magierski, J. Skalski, and J. Blocki, Phys. Rev. C 56, 1011 (1997).ADSCrossRefGoogle Scholar
  113. 105.
    J. P. Blocki, A. G. Magner, and I. S. Yatsyshyn, Nucl. Phys. At. Energy 11, 239 (2010); Int. J. Mod. Phys. E 20, 292 (2011); 21, 1250034 (2012).Google Scholar
  114. 106.
    I. Hamamoto, B. R. Mottelson, H. Xie, and X. Z. Zhang, Z. Phys. D 21, 163 (1991).ADSCrossRefGoogle Scholar
  115. 107.
    S. M. Reimann, M. Koskinen, H. Häkkinen, et al., Phys. Rev. B 56, 12147 (1997).ADSCrossRefGoogle Scholar
  116. 108.
    S. Takami, K. Yabana, and M. Matsuo, Phys. Lett. B 431, 242 (1998).ADSCrossRefGoogle Scholar
  117. 109.
    J. Dudek, A. Goźdź, N. Schunck, and M. Miśkiewicz, Phys. Rev. Lett. 88, 252502 (2002).ADSCrossRefGoogle Scholar
  118. 110.
    K. Arita and Y. Mukumoto, Phys. Rev. C 89, 054308 (2014).ADSCrossRefGoogle Scholar
  119. 111.
    M. Brack, M. Ögren, Y. Yu, and S. M. Reimann, J. Phys. A 38, 9941 (2005).ADSMathSciNetCrossRefGoogle Scholar
  120. 112.
    H. Frisk and T. Guhr, Ann. Phys. (N.Y.) 221, 229 (1993).ADSCrossRefGoogle Scholar
  121. 113.
    Ch. Amann and M. Brack, J. Phys. A 35, 6009 (2002).ADSMathSciNetCrossRefGoogle Scholar
  122. 114.
    M. Brack, Ch. Amann, M. Pletyukhov, and O. Zaitsev, Int. J. Mod. Phys. E 13, 19 (2004).ADSCrossRefGoogle Scholar
  123. 115.
    K. Bencheikh, P. Quentin, and J. Bartel, Nucl. Phys. A 571, 518 (1994).ADSCrossRefGoogle Scholar
  124. 116.
    V. M. Strutinskii and A. S. Tyapin, Sov. Phys. JETP 18, 664 (1964).Google Scholar
  125. 117.
    V. M. Strutinsky, A. G. Magner, and M. Brack, Z. Phys. A 319, 205 (1984).ADSCrossRefGoogle Scholar
  126. 118.
    V. M. Strutinsky, A. G. Magner, and V. Yu. Denisov, Z. Phys. A 322, 149 (1985); Sov. J. Nucl. Phys. 42, 690 (1985).ADSCrossRefGoogle Scholar
  127. 119.
    A. G. Magner, A. I. Sanzhur, and A. M. Gzhebinsky, Int. J. Mod. Phys. E 18, 885 (2009).ADSCrossRefGoogle Scholar
  128. 120.
    J. P. Blocki, A. G. Magner, P. Ring, and A. A. Vlasenko, Phys. Rev. C 87, 044304 (2013).ADSCrossRefGoogle Scholar
  129. 121.
    J. P. Blocki, A. G. Magner, and P. Ring, Phys. Scr. 89, 054019 (2014).ADSCrossRefGoogle Scholar
  130. 122.
    J. P. Blocki, A. G. Magner, and P. Ring, Phys. Scr. 90, 114009 (2015).ADSCrossRefGoogle Scholar
  131. 123.
    J. P. Blocki, A. G. Magner, and P. Ring, Phys. Rev. C 92, 064311 (2015).ADSCrossRefGoogle Scholar
  132. 124.
    P. F. Byrd and M. D. Friedman, Handbook of Elliptic Integrals for Engineers and Scientists, 2nd ed (Sprinder-Verlag, Berlin, Heidelberg, 1971).MATHCrossRefGoogle Scholar
  133. 125.
    S. C. Milne, in Developments in Mathematics (Kluwer Academic Publ., Dordrecht, 2002); Ramanujan J. 6, 7 (2002).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.Institute for Nuclear ResearchNASUKievUkraine
  2. 2.Department of PhysicsNagoya Institute of TechnologyNagoyaJapan

Personalised recommendations