Physics of Atomic Nuclei

, Volume 79, Issue 4, pp 474–480 | Cite as

Analyzing fragment production in mass-asymmetric reactions as a function of density dependent part of symmetry energy

  • Amandeep Kaur
  • Deepshikha
  • Karan Singh Vinayak
  • Suneel Kumar
Nuclei Theory
  • 50 Downloads

Abstract

We performed a theoretical investigation of different mass-asymmetric reactions to access the direct impact of the density-dependent part of symmetry energy on multifragmentation. The simulations are performed for a specific set of reactions having same system mass and N/Z content, using isospin-dependent quantum molecular dynamics model to estimate the quantitative dependence of fragment production on themass-asymmetry factor (τ) for various symmetry energy forms. The dynamics associated with different mass-asymmetric reactions is explored and the direct role of symmetry energy is checked. Also a comparison with the experimental data (asymmetric reaction) is presented for a different equation of states (symmetry energy forms).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Danielewicz, R. Lacey, and W. G. Lynch, Science 298, 1592 (2002)ADSCrossRefGoogle Scholar
  2. 1a.
    D. V. Shetty, S. J. Yennello, and G. A. Souliotis, Phys. Rev. C 76, 024606 (2007)ADSCrossRefGoogle Scholar
  3. 1b.
    Z. Xiao, B.-A. Li, L.-W. Chen, et al., Phys. Rev. Lett. 102, 062502 (2009)ADSCrossRefGoogle Scholar
  4. 1c.
    S. Gautum, Phys. Rev. C 88, 057603 (2013).ADSCrossRefGoogle Scholar
  5. 2.
    W.-M. Guo, G.-C. Yong, and W. Zuo, Phys. Rev. C 90, 044605 (2014).ADSCrossRefGoogle Scholar
  6. 3.
    J.-Y. Liu et al., Phys. Lett. B 540, 213 (2002).ADSCrossRefGoogle Scholar
  7. 4.
    Qianghua Wu et al., Phys. Rev. C 91, 014617 (2015).ADSCrossRefGoogle Scholar
  8. 5.
    Hajime Sotani et al., Phys. Rev. C 91, 015805 (2015).ADSMathSciNetCrossRefGoogle Scholar
  9. 6.
    N. Wang et al., Phys. Rev. C 91, 044308 (2015).ADSCrossRefGoogle Scholar
  10. 7.
    B.-A. Li et al., Phys. Rev. C 91, 044601 (2015).ADSCrossRefGoogle Scholar
  11. 8.
    K. S. Vinayak and A. K. Chaudhuri, J. Phys. G 42, 025108 (2015).ADSCrossRefGoogle Scholar
  12. 9.
    J. Singh, S. Kumar, and R. K. Puri, Phys. Rev. C 62, 044617 (2000); Phys. Rev. C 63, 054603 (2011)ADSCrossRefGoogle Scholar
  13. 9a.
    V. Kaur and S. Kumar, Phys. Rev. C 81, 064610 (2010).ADSCrossRefGoogle Scholar
  14. 10.
    M. B. Tsang et al., Prog. Part. Nucl. Phys. 66, 400 (2011)ADSCrossRefGoogle Scholar
  15. 10a.
    K. S. Jeong and S. H. Lee, Nucl. Sci. Tech. 24, 050506 (2013)Google Scholar
  16. 10b.
    M. B. Tsang et al., Phys. Rev. C 86, 015803 (2012).ADSCrossRefGoogle Scholar
  17. 11.
    C. Hartnack et al., Eur. Phys. J. A 1, 151 (1998)ADSCrossRefGoogle Scholar
  18. 11a.
    C. David, C. Hartnack, and J. Aichelin, Nucl. Phys. A 650, 358 (1999)ADSCrossRefGoogle Scholar
  19. 11b.
    C. Hartnack et al., Phys. Rep. 510, 119 (2012).ADSCrossRefGoogle Scholar
  20. 12.
    J. Aichelin, Phys. Rep. 202, 233 (1991)ADSCrossRefGoogle Scholar
  21. 12a.
    J. Aichelin and H. Stöcker, Phys. Lett. B 176, 14 (1986).ADSCrossRefGoogle Scholar
  22. 13.
    J. Aichelin, A. Rosenhauer, and G. Peilert, et al., Phys. Rev. Lett. 58, 1926 (1987).ADSCrossRefGoogle Scholar
  23. 14.
    L. G. Arnold et al., Phys. Rev. C 25, 936 (1982)ADSCrossRefGoogle Scholar
  24. 14a.
    G. Passatore, Nucl. Phys. A 95, 694 (1967).ADSCrossRefGoogle Scholar
  25. 15.
    S. A. Bass, C. Hartnack, H. Stöcker, and W. Greiner, Phys. Rev. C 51, 3343 (1995)ADSCrossRefGoogle Scholar
  26. 15a.
    B. J. VerWest and R. A. Arndt, Phys. Rev. C 25, 1979 (1982).ADSCrossRefGoogle Scholar
  27. 16.
    H. Kruse, B. V. Jacak, and H. Stöcker, Phys. Rev. Lett. 54, 289 (1985)ADSCrossRefGoogle Scholar
  28. 16a.
    J. J Molitoris and H. Stöcker, Phys. Rev C 32, 346(R) (1985).ADSCrossRefGoogle Scholar
  29. 17.
    J.-Y. Liu et al., Phys. Rev. Lett. 86, 975 (2001).ADSCrossRefGoogle Scholar
  30. 18.
    B.-A. Li, L.-W. Chen, and C. M. Ko, Phys. Rep. 464, 113 (2008)ADSCrossRefGoogle Scholar
  31. 18a.
    K. S. Vinayak and S. Kumar, J. Phys. G 39, 095105 (2012)ADSCrossRefGoogle Scholar
  32. 18b.
    S. Gautam et al., J. Phys. G 37, 085102 (2010).ADSCrossRefGoogle Scholar
  33. 19.
    K. S. Vinayak and S. Kumar, Eur. Phys. J. A 48, 96 (2012); Pramana—J. Phys. 82, 515 (2014).ADSCrossRefGoogle Scholar
  34. 20.
    S. Gautam, A. D. Sood, R. K. Puri, and J. Aichelin, Phys. Rev. C 83, 034606 (2011)ADSCrossRefGoogle Scholar
  35. 20a.
    S. Gautam, R. Kumari, and R. K. Puri, Phys. Rev. C 86, 034607 (2012).ADSCrossRefGoogle Scholar
  36. 21.
    R. Kumar, S. Gautam, and R. K. Puri, Phys. Rev. C 89, 064608 (2014).ADSCrossRefGoogle Scholar
  37. 22.
    M. B. Tsang et al., Phys. Rev. Lett. 71, 1502 (1993).ADSCrossRefGoogle Scholar
  38. 23.
    M. Begemann-Blaich et al., Phys. Rev. C 48, 610 (1993).ADSCrossRefGoogle Scholar
  39. 24.
    D. T. Khoa et al., Nucl. Phys. A 548, 102 (1992)ADSCrossRefGoogle Scholar
  40. 24a.
    R. K. Puri et al., Nucl. Phys. A 575, 733 (1994).ADSCrossRefGoogle Scholar
  41. 25.
    S. Goyal, Phys. Rev. C 84, 044614 (2011).ADSCrossRefGoogle Scholar
  42. 26.
    S. Goyal, Phys. Rev. C 83, 047604 (2011).ADSCrossRefGoogle Scholar
  43. 27.
    K. S. Vinayak and S. Kumar, Pramana—J. Phys. 82, 515 (2014).ADSCrossRefGoogle Scholar
  44. 28.
    Y. K. Vermani, S. Goyal, and R. K. Puri, Phys. Rev. C 79, 064613 (2009).ADSCrossRefGoogle Scholar
  45. 29.
    D. V. Shetty, S. J. Yennello, and G. A. Souliotis, Phys. Rev. C 76, 024606 (2007); Phys. Rev. C 75, 034602 (2007).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • Amandeep Kaur
    • 1
  • Deepshikha
    • 1
  • Karan Singh Vinayak
    • 2
  • Suneel Kumar
    • 3
  1. 1.School of Physics and Materials ScienceThapar UniversityPatialaIndia
  2. 2.DAV CollegeChandigarhIndia
  3. 3.Department of Applied Sciences (Physics Group)Chandigarh UniversityGharuan (Mohali)India

Personalised recommendations