Advertisement

Physics of Atomic Nuclei

, Volume 79, Issue 1, pp 21–37 | Cite as

Deformation properties of lead isotopes

  • S. V. Tolokonnikov
  • I. N. Borzov
  • Yu. S. Lutostansky
  • E. E. SapersteinEmail author
Nuclei Theory

Abstract

The deformation properties of a long lead isotopic chain up to the neutron drip line are analyzed on the basis of the energy density functional (EDF) in the FaNDF0 Fayans form. The question of whether the ground state of neutron-deficient lead isotopes can have a stable deformation is studied in detail. The prediction of this deformation is contained in the results obtained on the basis of the HFB-17 and HFB-27 Skyrme EDF versions and reported on Internet. The present analysis reveals that this is at odds with experimental data on charge radii and magnetic moments of odd lead isotopes. The Fayans EDF version predicts a spherical ground state for all light lead isotopes, but some of them (for example, 180Pb and 184Pb) prove to be very soft—that is, close to the point of a phase transition to a deformed state. Also, the results obtained in our present study are compared with the predictions of some other Skyrme EDF versions, including SKM*, SLy4, SLy6, and UNE1. By and large, their predictions are closer to the results arising upon the application of the Fayans functional. For example, the SLy4 functional predicts, in just the same way as the FaNDF0 functional, a spherical shape for all nuclei of this region. The remaining three Skyrme EDF versions lead to a deformation of some light lead isotopes, but their number is substantially smaller than that in the case of the HFB-17 and HFB-27 functionals. Moreover, the respective deformation energy is substantially lower, which gives grounds to hope for the restoration of a spherical shape upon going beyond the mean-field approximation, which we use here. Also, the deformation properties of neutron-rich lead isotopes are studied up to the neutron drip line. Here, the results obtained with the FaNDF0 functional are compared with the predictions of the HFB-17, HFB-27, SKM*, and SLy4 Skyrme EDF versions. All of the EDF versions considered here predict the existence of a region where neutron-rich lead isotopes undergo deformations, but the size of this region is substantially different for the different functionals being considered. Once again, it is maximal for the HFB-17 and HFB-27 functionals, is substantially narrower for the FaNDF0 functional, and is still narrower for the SKM* and SLy4 functionals. The two-neutron drip line proved to be A drip 2n = 266 for all of the EDF versions considered here, with the exception of SKM*, for which it is shifted to A drip 2n (SKM*) = 272.

Keywords

Atomic Nucleus Lead Isotope Charge Radius Drip Line Neutron Drip Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Bohr and B. Mottelson, Nuclear Structure, Vol. 1: Single-Particle Motion (Benjamin, New York, 1969).Google Scholar
  2. 2.
    A. Bohr and B. Mottelson, Nuclear Structure, Vol. 2: Nuclear Deformations (Benjamin, New York, 1974).Google Scholar
  3. 3.
    D. Vautherin and D. M. Brink, Phys. Rev. C 5, 626 (1972).ADSCrossRefGoogle Scholar
  4. 4.
    J. Dechargéand D. Gogny, Phys. Rev. C 21, 1568 (1980).ADSCrossRefGoogle Scholar
  5. 5.
    W. Kohn and L. J. Sham, Phys. Rev. A 140, 1133 (1965).ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    P. Hohenberg and W. Kohn, Phys. Rev. B 136, 864 (1964).ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    S. Goriely, N. Chamel, and J. M. Pearson, Phys. Rev. Lett. 102, 152503 (2009).ADSCrossRefGoogle Scholar
  8. 8.
    S. Goriely, http://www-astro.ulb.ac.be/bruslib/nucdata/Google Scholar
  9. 9.
    J. Bartel, P. Quentin, M. Brack, et al., Nucl. Phys. A 386, 79 (1982).ADSCrossRefGoogle Scholar
  10. 10.
    E. Chabanat, P. Bonche, P. Haensel, et al., Nucl. Phys. A 635, 231 (1998).ADSCrossRefGoogle Scholar
  11. 11.
    M. Bender, P.-H. Heenen, and P.-G. Reinhard, Rev. Mod. Phys. 75, 121 (2003).ADSCrossRefGoogle Scholar
  12. 12.
    M. Kortelainen, J. McDonnell, W. Nazarewicz, et al., Phys. Rev. C 85, 024304 (2012).ADSCrossRefGoogle Scholar
  13. 13.
    P. Ring, Prog. Part. Nucl. Phys. 37, 193 (1996).ADSCrossRefGoogle Scholar
  14. 14.
    M. Baldo, C. Maieron, P. Schuck, and X. Viñas, Nucl. Phys. A 736, 241 (2004).ADSCrossRefGoogle Scholar
  15. 15.
    M. Baldo, P. Schuck, and X. Viñas, Phys. Lett. B 663, 390 (2008).ADSCrossRefGoogle Scholar
  16. 16.
    M. Baldo, L. M. Robledo, P. Schuck, and X. Viñas, Phys. Rev. C 87, 064305 (2013).ADSCrossRefGoogle Scholar
  17. 17.
    V. A. Khodel and E. E. Saperstein, Phys. Rep. 92, 183 (1982).ADSCrossRefGoogle Scholar
  18. 18.
    A. B. Migdal, Theory of Finite Fermi Systems and Applications to Atomic Nuclei (Nauka, Moscow, 1965; Wiley, New York, 1967).Google Scholar
  19. 19.
    S. A. Fayans and V. A. Khodel, JETP Lett. 17, 444 (1973).ADSGoogle Scholar
  20. 20.
    A. B. Migdal, Theory of Finite Fermi Systems and Applications to Atomic Nuclei, 2nd ed. (Nauka, Moscow, 1981) [in Russian].Google Scholar
  21. 21.
    N. V. Gnezdilov, E. E. Saperstein, and S. V. Tolokonnikov, Europhys. Lett. 107, 62001 (2014).ADSCrossRefGoogle Scholar
  22. 22.
    N.V. Gnezdilov, E. E. Sapershtein, and S.V. Tolokonnikov, Phys. At. Nucl. 78, 24 (2015).CrossRefGoogle Scholar
  23. 23.
    V. A. Khodel, E. E. Saperstein, and M. V. Zverev, Nucl. Phys. A 465, 397 (1987).ADSCrossRefGoogle Scholar
  24. 24.
    P. Ring and P. Schuck, The Nuclear Many-Body Problem (Springer, New York, 1980).CrossRefGoogle Scholar
  25. 25.
    A. V. Smirnov, S. V. Tolokonnikov, and S. A. Fayans, Sov. J. Nucl. Phys. 48, 995 (1988).Google Scholar
  26. 26.
    D. J. Horen, G. R. Satchler, S. A. Fayans, and E. L. Trykov, Nucl. Phys. A 600, 193 (1996).ADSCrossRefGoogle Scholar
  27. 27.
    I. N. Borzov, S. A. Fayans, E. Krömer, and D. Zawischa, Z. Phys. A 355, 117 (1996).ADSGoogle Scholar
  28. 28.
    S. A. Fayans, S. V. Tolokonnikov, E. L. Trykov, and D. Zawischa, Nucl. Phys. A 676, 49 (2000).ADSCrossRefGoogle Scholar
  29. 29.
    S. V. Tolokonnikov and E. E. Saperstein, Phys. At. Nucl. 73, 1684 (2010).CrossRefGoogle Scholar
  30. 30.
    E. E. Saperstein and S. V. Tolokonnikov, Phys. At. Nucl. 74, 1277 (2011).CrossRefGoogle Scholar
  31. 31.
    I. N. Borzov, E. E. Saperstein, and S.V. Tolokonnikov, Phys. At. Nucl. 71, 469 (2008).CrossRefGoogle Scholar
  32. 32.
    I. N. Borzov, E. E. Saperstein, S. V. Tolokonnikov, et al., Eur. Phys. J. A 45, 159 (2010).ADSCrossRefGoogle Scholar
  33. 33.
    S. V. Tolokonnikov, S. Kamerdzhiev, S. Krewald, E. E. Saperstein, and D. Voitenkov, Eur. Phys. J. A 48, 70 (2012).ADSCrossRefGoogle Scholar
  34. 34.
    S. Kamerdzhiev, S. Krewald, S. Tolokonnikov, E. E. Saperstein, and D. Voitenkov, EPJ Web Conf. 38, 10002 (2012).CrossRefGoogle Scholar
  35. 35.
    S. V. Tolokonnikov, S. Kamerdzhiev, D. Voytenkov, S. Krewald, and E. E. Saperstein, Phys. Rev. C 84, 064324 (2011).ADSCrossRefGoogle Scholar
  36. 36.
    S. V. Tolokonnikov, S. Kamerdzhiev, S. Krewald, E. E. Saperstein, and D. Voitenkov, EPJ Web Conf. 38, 04002 (2012).CrossRefGoogle Scholar
  37. 37.
    N. V. Gnezdilov, I. N. Borzov, E. E. Saperstein, and S. V. Tolokonnikov, Phys. Rev. C 89, 034304 (2014).ADSCrossRefGoogle Scholar
  38. 38.
    S. V. Tolokonnikov, I. N. Borzov, M. Kortelainen, Yu. S. Lutostansky, and E. E. Saperstein, J. Phys. G 42, 075102 (2015).ADSCrossRefGoogle Scholar
  39. 39.
    S. A. Fayans, JETP Lett. 68, 169 (1998).ADSCrossRefGoogle Scholar
  40. 40.
    M. V. Stoitsov, N. Schunck, M. Kortelainen, et al., Comput. Phys. Commun. 184, 1592 (2013).ADSCrossRefGoogle Scholar
  41. 41.
    M. V. Stoitsov, J. Dobaczewski, W. Nazarewicz, et al., Phys. Rev. C 68, 054312 (2003).ADSCrossRefGoogle Scholar
  42. 42.
    J. Erler, N. Birge, M. Kortelainen, et al., Nature 486, 509 (2012).ADSCrossRefGoogle Scholar
  43. 43.
    R. R. Rodrguez-Guzmán, J. L. Egido, and L. M. Robledo, Phys. Rev. C 69, 054319 (2004).ADSCrossRefGoogle Scholar
  44. 44.
    M. Bender, P. Bonche, T. Duguet, and P.-H. Heenen, Phys. Rev. C 69, 064303 (2004).ADSCrossRefGoogle Scholar
  45. 45.
    I. Angeli, Recommended Values of Nuclear Charge Radii (2008), http://cdfe.sinp.msu.ru/services/radchart/radhelp.html#radGoogle Scholar
  46. 46.
    Yu. Gangrsky and K. Marinova (2008), http://cdfe.sinp.msu.ru/services/radchart/radhelp. html#radGoogle Scholar
  47. 47.
    Database of the Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics. http://cdfe.sinp.msu.ru/services/radchart/radmain.htmlGoogle Scholar
  48. 48.
    N. J. Stone, At. DataNucl. Data Tables 90, 75 (2005).ADSCrossRefGoogle Scholar
  49. 49.
    K. Heyde and J. L. Wood, Rev. Mod. Phys. 83, 1467 (2011).ADSCrossRefGoogle Scholar
  50. 50.
    R. Julin, K. Helariutta, and M. Muikku, J. Phys. G 27, R109 (2001).ADSCrossRefGoogle Scholar
  51. 51.
    P. Rahkila, D. G. Jenkins, J. Pakarinen, et al., Phys. Rev. C 82, 011303(R) (2010).ADSCrossRefGoogle Scholar
  52. 52.
    M. Bender, T. Duguet, and D. Lacroix, Phys. Rev. C 79, 044319 (2009).ADSCrossRefGoogle Scholar
  53. 53.
    J. M. Yao, M. Bender, and P.-H. Heenen, Phys. Rev. C 87, 034322 (2013).ADSCrossRefGoogle Scholar
  54. 54.
    M. Bender, T. Cornelius, G. A. Lalazissis, et al., Eur. Phys. J. A 14, 23 (2002).ADSGoogle Scholar
  55. 55.
    K. Heyde, C. de Coster, P. van Duppen, et al., Phys. Rev. C 53, 1035 (1996).ADSCrossRefGoogle Scholar
  56. 56.
    B. Friedman and V. R. Pandharipande, Nucl. Phys. A 361, 502 (1981).ADSCrossRefGoogle Scholar
  57. 57.
    J. A. Nolen, and J. P. Schiffer, Ann. Rev. Nucl. Part. Sci. 19, 471 (1969).ADSCrossRefGoogle Scholar
  58. 58.
    B. A. Brown, Phys. Rev. C 58, 220 (1998).ADSCrossRefGoogle Scholar
  59. 59.
    G. Audi, A. H. Wapstra, and C. Thibault, Nucl. Phys. A 729, 337 (2003).ADSCrossRefGoogle Scholar
  60. 60.
    M. Dutra, O. Lourenceo, J. S. SáMartins, et al., Phys. Rev. C 85, 035201 (2012).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • S. V. Tolokonnikov
    • 1
    • 2
  • I. N. Borzov
    • 1
    • 3
  • Yu. S. Lutostansky
    • 1
  • E. E. Saperstein
    • 1
    • 4
    Email author
  1. 1.National Research Center Kurchatov InstituteMoscowRussia
  2. 2.Moscow Institute of Physics and Technology (State University)DolgoprudnyiRussia
  3. 3.Joint Institute for Nuclear ResearchDubnaRussia
  4. 4.National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)MoscowRussia

Personalised recommendations