Advertisement

Physics of Atomic Nuclei

, Volume 78, Issue 13, pp 1544–1551 | Cite as

Barrel calorimeter of the CMD-3 detector

  • V. E. ShebalinEmail author
  • A. V. Anisenkov
  • V. M. Aulchenko
  • N. S. Bashtovoy
  • D. A. Epifanov
  • L. B. Epshteyn
  • A. A. Grebenuk
  • F. V. Ignatov
  • A. L. Erofeev
  • O. A. Kovalenko
  • A. N. Kozyrev
  • A. S. Kuzmin
  • I. B. Logashenko
  • K. Yu. Mikhailov
  • G. P. Razuvaev
  • A. A. Ruban
  • B. A. Shwartz
  • A. A. Talyshev
  • V. M. Titov
  • Yu. V. Yudin
Detectors and Methods of Investigation
  • 28 Downloads

Abstract

The structure of the barrel calorimeter of the CMD-3 detector is presented in this work. The procedure of energy calibration of the calorimeter and the method of photon energy restoration are described. The distinctive feature of this barrel calorimeter is its combined structure; it is composed of two coaxial subsystems: a liquid xenon calorimeter and a crystalline CsI calorimeter. The calorimeter spatial resolution of the photon conversion point is about 2 mm, which corresponds to an angular resolution of ∼6 mrad. The energy resolution of the calorimeter is about 8% for photons with energy of 200 MeV and 4% for photons with energy of 1 GeV.

Keywords

calorimetry liquid xenon scintillator 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yu. M. Shatunov et al., Conf. Proc. C 0006262, 439 (2000).Google Scholar
  2. 2.
    D. E. Berkaev et al., Nucl. Phys. Proc. Suppl. 225–227, 303 (2012).CrossRefGoogle Scholar
  3. 3.
    M. N. Achasov et al., Nucl. Instrum. Methods Phys. Res. A 744, 35 (2014).CrossRefADSGoogle Scholar
  4. 4.
    B. I. Khazin et al., Nucl. Phys. Proc. Suppl. 181–182, 376 (2008).CrossRefGoogle Scholar
  5. 5.
    M. N. Achasov et al., Nucl. Instrum. Methods Phys. Res. A 598, 31 (2009).CrossRefADSGoogle Scholar
  6. 6.
    A. V. Bragin et al., IEEE Trans. Appl. Supercond. 20, 2336 (2010).CrossRefADSGoogle Scholar
  7. 7.
    R. R. Akhmetshin et al., Phys. At. Nucl. 72, 477 (2009).CrossRefGoogle Scholar
  8. 8.
    V. E. Shebalin et al., J. Instrum. 9, C10013 (2014).CrossRefGoogle Scholar
  9. 9.
    A. V. Anisyonkov et al., J. Instrum. 9, C08024 (2014).CrossRefGoogle Scholar
  10. 10.
    V. M. Aulchenko et al., BUDKER-INP 2008 39 (2008).Google Scholar
  11. 11.
    A. V. Anisyonkov et al., Yad. Fiz. Inzhinir. 4, 883 (2013).Google Scholar
  12. 12.
    A. N. Kozyrev et al., J. Instrum. 9, C10016 (2014).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • V. E. Shebalin
    • 1
    • 2
    Email author
  • A. V. Anisenkov
    • 1
    • 2
  • V. M. Aulchenko
    • 1
    • 2
  • N. S. Bashtovoy
    • 1
  • D. A. Epifanov
    • 4
  • L. B. Epshteyn
    • 1
    • 3
  • A. A. Grebenuk
    • 1
    • 2
  • F. V. Ignatov
    • 1
    • 2
  • A. L. Erofeev
    • 1
    • 2
  • O. A. Kovalenko
    • 1
    • 2
  • A. N. Kozyrev
    • 1
    • 3
  • A. S. Kuzmin
    • 1
    • 2
  • I. B. Logashenko
    • 1
    • 2
  • K. Yu. Mikhailov
    • 1
    • 2
  • G. P. Razuvaev
    • 1
    • 2
  • A. A. Ruban
    • 1
    • 2
  • B. A. Shwartz
    • 1
    • 2
  • A. A. Talyshev
    • 1
    • 2
  • V. M. Titov
    • 1
  • Yu. V. Yudin
    • 1
  1. 1.Budker Institute of Nuclear Physics, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia
  3. 3.Novosibirsk State Technical UniversityNovosibirskRussia
  4. 4.Department of PhysicsUniversity of TokyoTokyoJapan

Personalised recommendations