Advertisement

Physics of Atomic Nuclei

, Volume 78, Issue 6, pp 777–793 | Cite as

Study of rlastic and inelastic 11 B +α scattering and search for cluster states of enlarged radius in 11B

  • A. N. Danilov
  • A. S. Demyanova
  • S. V. Dmitriev
  • A. A. Ogloblin
  • T. L. Belyaeva
  • S. A. Goncharov
  • Yu. B. Gurov
  • V. A. Maslov
  • Yu. G. Sobolev
  • W. Trzaska
  • S. V. Khlebnikov
  • P. Heikkinen
  • R. Julin
  • G. P. Tyurin
  • N. Burtebaev
  • T. Zholdybayev
Nuclei Experiment

Abstract

The differential cross sections for elastic and inelastic 11B + α scattering were measured at the alpha-particle energy of 65 MeV, the inelastic-scattering processes leading to the excitation of known states of 11B up to excitation energies of about 14 MeV. Data on elastic scattering were analyzed together with those that were published earlier for lower energies. The cross sections for inelastic scattering were analyzed on the basis of the distorted-wave method. A modified diffractionmodel was used to determine the root-mean-square radii of excited states. The radii of states whose excitation energies were below about 7MeV were found to agree with radius of the ground state to within 0.1 to 0.15 fm. This result complieswith the traditional idea that the low-lying states of 11B have a shell structure. The possibility that these states belong to the predicted rotational bands, which, if any, are truncated to three states, cannot be ruled out either. The majority of the observed highly excited states are distributed among four rotational bands. The moments of inertia of these bands are close; for the band based on the 3/2 state at E* = 8.56 MeV, they are even higher than those of the Hoyle state in the 12C nucleus. The measured radii of states associated with these bands of 11B are larger than the ground-state radius by 0.7 to 1.0 fm and are also close to the radius of the Hoyle state. The results of the present study agree with the existing predictions that the cluster structure of the 11B nucleus is diverse at high excitation energies. The hypothesis that the 11B nucleus features a “giant” state of size commensurate with those in heavy nuclei was not confirmed.

Keywords

Atomic Nucleus Inelastic Scattering Rotational Band High Excitation Energy Hoyle State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. Kanada-En’yo, Phys. Rev. C 75, 024302 (2007).CrossRefADSGoogle Scholar
  2. 2.
    T. Suhara and Y. Kanada-En’yo, Phys. Rev. C 85, 054320 (2012).CrossRefADSGoogle Scholar
  3. 3.
    T. Yamada and Y. Funaki, Phys. Rev. C 82, 064315 (2010).CrossRefGoogle Scholar
  4. 4.
    H. Yamaguchi et al., Phys. Rev. C 83, 034306Google Scholar
  5. 5.
    A. Tohsaki, H. Horiuchi, P. Schuck, and G. Röpke, Phys. Rev. Lett. 87, 192501 (2001).CrossRefGoogle Scholar
  6. 6.
    N. Burtebaev, M. K. Baktybaev, B. A. Duisebaev, R. J. Peterson, and S. B. Sakuta, Phys. At. Nucl. 68, 1303 (2005).CrossRefGoogle Scholar
  7. 7.
    T. Kawabata et al., Phys. Lett. B 646, 6 (2007).CrossRefADSGoogle Scholar
  8. 8.
    A. N. Danilov et al., Phys. Rev. C 80, 054603 (2009).MathSciNetCrossRefADSGoogle Scholar
  9. 9.
    A. S. Demyanova et al., Int. J. Mod. Phys. E 20, 915 (2011).CrossRefADSGoogle Scholar
  10. 10.
    A. N. Danilov et al., EP JWeb Conf. 66, 03007 (2014).CrossRefGoogle Scholar
  11. 11.
    H. Abele et al., Z. Phys. A 326, 373 (1987).ADSGoogle Scholar
  12. 12.
    S. A. Goncharov et al., EPJ Web Conf. 66, 03034 (2014).CrossRefGoogle Scholar
  13. 13.
    A. A. Ogloblin, S. A. Goncharov, Yu. A. Glukhov, A. S. Dem’yanova, M. V. Rozhkov, V. P. Rudakov, and W. H. Trzaska, Phys. At. Nucl. 66, 1478 (2003).CrossRefGoogle Scholar
  14. 14.
    A. A. Ogloblin, T. L. Belyaeva, A. N. Danilov, et al., AIP Conf. Proc. 1224, 100 (2010).CrossRefADSGoogle Scholar
  15. 15.
    J. S. Blair, Phys. Rev. 115, 928 (1959).MathSciNetCrossRefADSGoogle Scholar
  16. 16.
    S. Ohkubo and Y. Hirabayashi, Phys. Rev. C 70, 041602(R) (2004).CrossRefADSGoogle Scholar
  17. 17.
    A. S. Demyanova et al., Int. J. Mod. Phys. E 17, 2118 (2008)CrossRefADSGoogle Scholar
  18. 18.
    F. Ajzenberg-Selove, Nucl. Phys. A 506, 1 (1990).CrossRefADSGoogle Scholar
  19. 19.
    A. A. Ogloblin et al., EPJ Web Conf. 66, 02074 (2014).CrossRefGoogle Scholar
  20. 20.
    R. J. Charity et al., Phys. Rev. C 78, 054307 (2008).CrossRefADSGoogle Scholar
  21. 21.
    N. Sois´ et al., Nucl. Phys. A 742, 271 (2004).CrossRefADSGoogle Scholar
  22. 22.
    N. Curtis et al., Phys. Rev. C 72, 044320 (2005).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • A. N. Danilov
    • 1
  • A. S. Demyanova
    • 1
  • S. V. Dmitriev
    • 1
  • A. A. Ogloblin
    • 1
  • T. L. Belyaeva
    • 2
  • S. A. Goncharov
    • 3
  • Yu. B. Gurov
    • 4
  • V. A. Maslov
    • 5
  • Yu. G. Sobolev
    • 5
  • W. Trzaska
    • 6
  • S. V. Khlebnikov
    • 7
  • P. Heikkinen
    • 6
  • R. Julin
    • 6
  • G. P. Tyurin
    • 6
  • N. Burtebaev
    • 8
  • T. Zholdybayev
    • 8
  1. 1.National Research Center Kurchatov InstituteMoscowRussia
  2. 2.UniversidadAutonoma del Estado de Mexico, Codigo PostalTolucaMexico
  3. 3.Faculty of PhysicsMoscow State UniversityMoscowRussia
  4. 4.National Research Nuclear University MEPhIMoscowRussia
  5. 5.Joint Institute for Nuclear ResearchMoscow oblastRussia
  6. 6.Jyväskylän yliopistoJyväskyläFinland
  7. 7.Khlopin Radium InstituteSt.-PetersburgRussia
  8. 8.Institute of Nuclear PhysicsNational Nuclear Center of Republic of KazakhstanAlmatyRepublic of Kazakhstan

Personalised recommendations