Advertisement

Physics of Atomic Nuclei

, Volume 78, Issue 2, pp 312–336 | Cite as

Classical gluon fields and collective dynamics of color-charge systems

  • V. Voronyuk
  • V. V. Goloviznin
  • G. M. Zinovjev
  • W. Cassing
  • S. V. Molodtsov
  • A. M. Snigirev
  • V. D. Toneev
Elementary Particles and Fields Theory

Abstract

An investigation of color fields that arise in collisions of relativistic heavy ions reveals that, in the non-Abelian case, a change in the color charge leads to the appearance of an extra term that generates a sizable contribution of color-charge glow in chromoelectric and chromomagnetic fields. The possibility of the appearance of a color echo in the scattering of composite color particles belonging to the dipole type is discussed. Arguments are adduced in support of the statement that such effects are of importance in simulating the first stage of ultrarelativistic heavy-ion collisions,where the initial parton state is determined by a high nonequilibrium parton density and by strong local color fluctuations.

Keywords

Large Hadron Collider Atomic Nucleus Color Space Color Charge Collision Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Peshier and W. Cassing, Phys. Rev. Lett. 94, 172301 (2005); M. Gyulassy and L.McLerran, Nucl. Phys. A 750, 30 (2005).CrossRefADSGoogle Scholar
  2. 2.
    F. Wang, arXiv: 1401.1758 [nucl-ex].Google Scholar
  3. 3.
    V. Skokov, A. Y. Illarionov, and V. D. Toneev, Int. J. Mod. Phys. A 24, 5925 (2009); V. Voronyuk, V. D. Toneev, W. Cassing, et al., Phys. Rev. C 83, 054911 (2011).CrossRefADSGoogle Scholar
  4. 4.
    K. Fukushima, D. E. Kharzeev, and H. J. Warringa, Phys. Rev. D 78, 074033 (2008).CrossRefADSGoogle Scholar
  5. 5.
    D. E. Kharzeev, K. Landsteiner, A. Schmidt, and Ho-Ung Yee, arXiv:1211.6245 [hep-ph].Google Scholar
  6. 6.
    ALICE Collab. ( B. Abelev et al.), Phys. Rev. Lett. 110, 012301 (2013).CrossRefADSGoogle Scholar
  7. 7.
    S. A. Voloshin, arXiv:1211.5680 [nucl-ex].Google Scholar
  8. 8.
    T. Epelbaum and F. Gelis, arXiv:1307.1765 [hepph]; J. Berges, K. Boguslavski, S. Schlihting, and R. Venugopalan, arXiv:1311.3005 [hep-ph].Google Scholar
  9. 9.
    L. McLerran and R. Venugopalan, Phys. Rev. D 49, 2233 (1994); F. Gelis, E. Iancu, J. Jalilian-Marian, and R. Venugopalan, Annu. Rev. Nucl. Part. Sci. 60, 463 (2010); F. Gelis, Int. J. Mod. Phys. A 28, 1330001 (2013).CrossRefADSGoogle Scholar
  10. 10.
    E. A. Kuraev, L. N. Lipatov, and V. S. Fadin, Sov. Phys. JETP 45, 199 (1977); Ya. Ya. Balitsky and L. N. Lipatov, Sov. J. Nucl. Phys. 28, 822 (1978).ADSMathSciNetGoogle Scholar
  11. 11.
    A. Kovner, L. McLerran, and H. Weigert, Phys. Rev. D 52, 6231, 3809 (1995).CrossRefADSGoogle Scholar
  12. 12.
    I. Balitsky, Nucl. Phys. B 463, 99 (1996); Phys. Rev. D 60, 014020 (1999); Yu. V. Kovchegov, Phys. Rev. D 60, 034008 (1999).CrossRefADSGoogle Scholar
  13. 13.
    J. Jalilian-Marian, A. Kovner, and H. Weigert, Phys. Rev. D 59, 014015 (1998); hep-ph/9709432.CrossRefADSGoogle Scholar
  14. 14.
    E. Iancu, A. Leonidov, and L. McLerran, Phys. Lett. B 510, 133 (2001); Nucl. Phys. A 692, 583 (2001).CrossRefADSMATHGoogle Scholar
  15. 15.
    T. Lappi and L. McLerran, Nucl. Phys. A 772, 200 (2006).CrossRefADSGoogle Scholar
  16. 16.
    B. G. Zakharov, JETP Lett. 63, 952 (1996); JETP Lett. 64, 781 (1996); JETP Lett. 65, 615 (1997); N. N. Nikolaev, W. Schäfer, B. G. Zakharov, and V. R. Zoller, JETP 97, 441 (2003); Phys. Atom. Nucl. 68, 661 (2005).CrossRefADSGoogle Scholar
  17. 17.
    B. Schenke, P. Tribedy, and R. Venugopalan, Phys. Rev. Lett. 108, 252301 (2012); Phys. Rev. C 86, 034908 (2013).CrossRefADSGoogle Scholar
  18. 18.
    J. L. Albacete, J. Phys. G 38, 124006 (2011).CrossRefADSGoogle Scholar
  19. 19.
    Ch. Gale, S. Jeon, B. Schenke, et al., Phys.Rev. Lett. 110, 012302 (2013); T. Epelbaum and F. Gelis, Phys. Rev. Lett. 111, 232301 (2013).CrossRefADSGoogle Scholar
  20. 20.
    I. N.Mishustin and J. T. Kapusta, Phys. Rev. Lett. 88, 112501 (2002); I. N. Mishustin and K. A. Lyakhov, Phys. Rev. C 76, 011603 (2007).CrossRefADSGoogle Scholar
  21. 21.
    Ya. P. Terletsky and Yu.P. Rybakov, Electrodynamics (Vysshaya Shkola, Moscow, 1990) [in Russian].Google Scholar
  22. 22.
    F. Rohrlich, Classical Charged Particles, 3rd ed. (World Scientific, Singapore, 2007).CrossRefMATHGoogle Scholar
  23. 23.
    I. B. Khriplovich, Sov. Phys. JETP 47, 18 (1978).ADSGoogle Scholar
  24. 24.
    V. V. Goloviznin, S. V.Molodtsov, and A. M. Snigirev, Phys. At. Nucl. 56, 782 (1993).Google Scholar
  25. 25.
    A. F. Matveev and S. V. Molodtsov, Differ. Uravn. 29, 1533 (1993).MathSciNetGoogle Scholar
  26. 26.
    J. E. Mandula, Phys. Rev. D 14, 3497 (1976); Phys. Lett. B 67, 175 (1977); Phys. Lett. B 69, 495 (1977).CrossRefADSGoogle Scholar
  27. 27.
    S. K. Wong, Nuovo Cimento A 65, 689 (1970).CrossRefADSGoogle Scholar
  28. 28.
    L. E. Elsgoltz and S. B. Norkin, Introduction to the Theory and Application of Differential Equations with a Deviating Argument (Nauka, Moscow, 1971) [in Russian]; A. D. Myshkis, Linear Differential Equations with a Retarded Argument (Nauka, Moscow, 1972) [in Russian]; E. Pinney, Ordinary Difference-Differential Equations (Univ. of California Press, 1958; Inostr. Liter., Moscow, 1961); R. Bellman and K. L. Cooke, Differential-Difference Equations (Academic Press, New York, 1963; Inostr. Liter.,Moscow, 1967).Google Scholar
  29. 29.
    Y. V. Kovchegov and D. H. Rischke, Phys. Rev. C 56, 1084 (1997).CrossRefADSGoogle Scholar
  30. 30.
    A. H. Mueller, Nucl. Phys. B 415, 373 (1994); 437, 107 (1995); A. H. Mueller and B. Patel, Nucl. Phys. B 425, 471 (1994).CrossRefADSGoogle Scholar
  31. 31.
    S. V. Molodtsov, A. M. Snigirev, and G. M. Zinovjev, Phys. Lett. B 443, 387 (1998); Phys. Rev. C 59, 955 (1999).CrossRefADSGoogle Scholar
  32. 32.
    G. Z. Basseyan, S. G. Matinyan, and G. K. Savvidi, JETP Lett. 29, 587 (1979); S. G. Matinyan, G. K. Savvidi, and N. G. Ter-Aratyunyan-Savvidi, Sov. Phys. JETP 53, 421 (1981); JETP Lett. 34, 590 (1981); B. V. Medvedev, Theor. Math. Phys. 60, 782 (1984); Theor. Math. Phys. 79, 618 (1989); Theor. Math. Phys. 109, 1565 (1996); Theor. Math. Phys. 122, 269 (2000); A. G. Lavkin, Sov. J. Nucl. Phys. 53, 198 (1991); Sov. J. Nucl. Phys. 53, 377 (1991); Sov. J. Nucl. Phys. 53, 1055 (1991); Phys. At. Nucl. 55, 124 (1992); Phys. At. Nucl. 55, 1422 (1992).ADSGoogle Scholar
  33. 33.
    R. J. Fries, B. Müller, and A. Schäfer, Phys. Rev. C 79, 034904 (2009); T. Kunihiro, B. Müller, A. Ohnishi, et al., Phys. Rev. D 82, 114015 (2010).CrossRefADSGoogle Scholar
  34. 34.
    V. E. Fortov, A. V. Ivlev, S. A. Khrapak, et al., Phys. Rep. 421, 1 (2005).CrossRefADSMathSciNetGoogle Scholar
  35. 35.
    A. V. Filippov, A. G. Zagorodnii, A. I. Momot, et al., JETP 104, 147 (2007).CrossRefADSGoogle Scholar
  36. 36.
    G. M. Zinoviev and S. V. Molodtsov, Theor. Math. Phys. 146, 221 (2006); Phys. At. Nucl. 70, 1136 (2007).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • V. Voronyuk
    • 1
    • 2
  • V. V. Goloviznin
    • 2
  • G. M. Zinovjev
    • 2
  • W. Cassing
    • 3
  • S. V. Molodtsov
    • 1
    • 4
  • A. M. Snigirev
    • 5
  • V. D. Toneev
    • 1
  1. 1.Joint Institute for Nuclear ResearchDubnaRussia
  2. 2.Bogolyubov Institute for Theoretical PhysicsNational Academy of Sciences of UkraineKyivUkraine
  3. 3.Institut für Theoretische PhysikJustus-Liebig-Universität GießenGießenGermany
  4. 4.Institute for Theoretical and Experimental PhysicsNational Research Center Kurchatov InstituteMoscowRussia
  5. 5.Skobeltsyn Institute of Nuclear PhysicsMoscow State UniversityMoscowRussia

Personalised recommendations