Physics of Atomic Nuclei

, Volume 77, Issue 9, pp 1157–1165 | Cite as

From the crust to the core of neutron stars on a microscopic basis

  • M. Baldo
  • G. F. Burgio
  • M. Centelles
  • B. K. Sharma
  • X. Viñas
Elementary Particles and Fields Theory


Within a microscopic approach the structure of Neutron Stars is usually studied by modelling the homogeneous nuclear matter of the core by a suitable Equation of State, based on a many-body theory, and the crust by a functional based on a more phenomenological approach. We present the first calculation of Neutron Star overall structure by adopting for the core an Equation of State derived from the Brueckner-Hartree-Fock theory and for the crust, including the pasta phase, an Energy Density Functional based on the same Equation of State, and which is able to describe accurately the binding energy of nuclei throughout the mass table. Comparison with other approaches is discussed. The relevance of the crust Equation of State for the Neutron Star radius is particularly emphasised.


Symmetry Energy Symmetric Nuclear Matter Neutron Star Matter Energy Density Functional Pure Neutron Matter 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Baldo, L. Robledo, P. Schuck, and X. Vinas, Phys. Rev. C 87, 064305 (2013).CrossRefADSGoogle Scholar
  2. 2.
    M. Baldo, P. Schuck, and X. Viñas, Phys. Lett. B 663, 390 (2008).CrossRefADSGoogle Scholar
  3. 3.
    M. Baldo, L. Robledo, P. Schuck, and X. Viñas, J. Phys. G 37, 064015 (2010).CrossRefADSGoogle Scholar
  4. 4.
    M. Baldo, Nuclear Methods and the Nuclear Equation of State, International Review of Nuclear Physics, Vol. 8 (World Scientific, Singapore, 1999).Google Scholar
  5. 5.
    H. Q. Song, M. Baldo, G. Giansiracusa, and U. Lombardo, Phys. Rev. Lett. 81, 1584 (1998); M. Baldo, G. Giansiracusa, U. Lombardo, and H. Q. Song, Phys. Lett. B 473, 1 (2000); M. Baldo, A. Fiasconaro, H. Q. Song, et al., Phys. Rev. C 65, 017303 (2001).CrossRefADSGoogle Scholar
  6. 6.
    J. Carlson, V. R. Pandharipande, and R. B. Wiringa, Nucl. Phys. A 401, 59 (1983); R. Schiavilla, V. R. Pandharipande, and R. B. Wiringa, Nucl. Phys. A 449, 219 (1986); B. S. Pudliner, V. R. Pandharipande, J. Carlson, et al., Phys. Rev. C 56, 1720 (1997).CrossRefADSGoogle Scholar
  7. 7.
    M. Baldo, I. Bombaci, and G. F. Burgio, Astron. Astrophys. 328, 274 (1997).ADSGoogle Scholar
  8. 8.
    X. R. Zhou, G. F. Burgio, U. Lombardo, et al., Phys. Rev. C 69, 018801 (2004).CrossRefADSGoogle Scholar
  9. 9.
    J. M. Lattimer and F. D. Swesty, Nucl. Phys. A 535, 331 (1991).CrossRefADSGoogle Scholar
  10. 10.
    H. Shen, H. Toki, K. Oyamatsu, and K. Sumiyoshi, Prog. Theor. Phys. 100, 1013 (1998); Nucl. Phys. A 637, 435 (1998).CrossRefADSGoogle Scholar
  11. 11.
  12. 12.
  13. 13.
    F. Douchin and P. Haensel, Astron. Astrophys. 389, 151 (2001).CrossRefADSGoogle Scholar
  14. 14.
    E. Chabanat, P. Bonche, P. Haensel, et al., Nucl. Phys. A 635, 231 (1998).CrossRefADSGoogle Scholar
  15. 15.
    B. Friedman and V. R. Pandharipande, Nucl. Phys. A 361, 502 (1981).CrossRefADSGoogle Scholar
  16. 16.
    A. F. Fantina, N. Chamel, J. M. Pearson, and S. Goriely, Astron. Astrophys. 559, A128 (2013); J. M. Pearson, N. Chamel, S. Goriely, and C. Ducoin, Phys. Rev. C 85, 065803 (2012).CrossRefADSGoogle Scholar
  17. 17.
    S. Goriely, N. Chamel, and J. M. Pearson, Phys. Rev. C 82, 035804 (2010).CrossRefADSGoogle Scholar
  18. 18.
    A. Y. Potekhin, A. F. Fantina, N. Chamel, J. M. Pearson, and S. Goriely, Astron. Astrophys. 560, A48 (2013).CrossRefADSGoogle Scholar
  19. 19.
    Tapas Sil, J. N. De, S. K. Samaddar, et al., Phys. Rev. C 66, 045803 (2002).CrossRefADSGoogle Scholar
  20. 20.
    K. Oyamatsu, Nucl. Phys. A 561, 431 (1993).CrossRefADSGoogle Scholar
  21. 21.
    M. Onsi, A. K. Dutta, H. Chatri, et al., Phys. Rev. C 77, 065805 (2008).CrossRefADSGoogle Scholar
  22. 22.
    P. Gögelein and H. Müther, Phys. Rev. C 76, 024312 (2007).CrossRefADSGoogle Scholar
  23. 23.
    K. S. Cheng, C. C. Yao, and Z. G. Dai, Phys. Rev. C 55, 2092 (1997).CrossRefADSGoogle Scholar
  24. 24.
    S. S. Avancini, D. P. Menezes, M. D. Alloy, et al., Phys. Rev. C 78, 015802 (2008).CrossRefADSGoogle Scholar
  25. 25.
    S. S. Avancini, L. Brito, J. R. Marinelli, et al., Phys. Rev. C 79, 035804 (2009).CrossRefADSGoogle Scholar
  26. 26.
    F. Grill, C. Providência, and S. S. Avancini, Phys. Rev. C 85, 055808 (2012).CrossRefADSGoogle Scholar
  27. 27.
    G. Baym, C. Pethick, and P. Sutherland, Astrophys. J. 170, 299 (1971).CrossRefADSGoogle Scholar
  28. 28.
    H. Pais and J. R. Stone, Phys. Rev. Lett. 109, 151101 (2012).CrossRefADSGoogle Scholar
  29. 29.
    J. M. Lattimer and M. Prakash, Science 304, 536 (2004).CrossRefADSGoogle Scholar
  30. 30.
    M. B. Tsang, J. R. Stone, F. Camera, et al., Phys. Rev. C 86, 015803 (2012); M. B. Tsang, C. K. Gelbke, X. D. Liu, et al., Phys. Rev. C 64, 054615 (2001); T. X. Liu, W. G. Lynch, M. B. Tsang, et al., Phys. Rev. C 76, 034603 (2007).CrossRefADSGoogle Scholar
  31. 31.
    S. L. Shapiro and S. A. Teukolski, Black Holes, White Dwarfs and Neutron Stars (Wiley, New York, 1983).CrossRefGoogle Scholar
  32. 32.
    J. Antoniadis et al., Science 340, 448 (2013).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • M. Baldo
    • 1
  • G. F. Burgio
    • 1
  • M. Centelles
    • 2
  • B. K. Sharma
    • 2
  • X. Viñas
    • 2
  1. 1.INFN Sezione di Catania, and Dipartimento di Fisica e AstronomiaUniversità di CataniaCataniaItaly
  2. 2.Departament d’Estructura i Constituentes de la Matèria and Institut de Ciències del Cosmos, Facultat de FísicaUniversitat de BarcelonaBarcelonaSpain

Personalised recommendations