Physics of Atomic Nuclei

, Volume 77, Issue 8, pp 989–998 | Cite as

Cluster model with core excitations. The 11Be example

Nuclei Theory

Abstract

Bound states and low-lying resonances of the 11Be one-neutron halo nucleus have been calculated within a two-body cluster model with core excitation. The lowest 10Be core excited 2+ state was considered as a quadrupole vibration. Shallow potentials were applied for neutron-core interaction, preventing motion in Pauli forbidden orbits. A good description of available experimental data including dipole excitations of 11Be was obtained. For the bound 1/2 excited state the \(\left[ {p_{3/2} \otimes 2^ + } \right]_{1/2^ - }\) wave-function component gives the dominant contribution to the structure, which differs from results obtained in cluster models with deep potentials.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. T. Belyaev, Mat. Fys. Medd. Dan. Vid. Selsk. 31, 641 (1959).MathSciNetGoogle Scholar
  2. 2.
    I. Talmi and I. Unna, Phys. Rev. Lett. 4, 469 (1960).ADSCrossRefGoogle Scholar
  3. 3.
    T. Otsuka, N. Fukunishi, and H. Sagawa, Phys. Rev. Lett. 70, 1385 (1993).ADSCrossRefGoogle Scholar
  4. 4.
    N. VinhMau, Nucl. Phys. A 592, 33 (1995).ADSCrossRefGoogle Scholar
  5. 5.
    C. Forssén et al., Phys. Rev. C 71, 044312 (2005).ADSCrossRefGoogle Scholar
  6. 6.
    M. V. Zhukov et al., Phys. Rep. 231, 151 (1993).ADSCrossRefGoogle Scholar
  7. 7.
    H. Esbensen, B. A. Brown, and H. Sagawa, Phys. Rev. C 51, 1274 (1995).ADSCrossRefGoogle Scholar
  8. 8.
    F. M. Nunes, I. J. Thompson, and R. C. Johnson, Nucl. Phys. A 596, 171 (1996).ADSCrossRefGoogle Scholar
  9. 9.
    D. Ridikas, M. H. Smedberg, J. S. Vaagen, and M. V. Zhukov, Europhys. Lett. 37, 385 (1997).ADSCrossRefGoogle Scholar
  10. 10.
    D. Ridikas, M. H. Smedberg, J. S. Vaagen, and M. V. Zhukov, Nucl. Phys. A 628, 363 (1998).ADSCrossRefGoogle Scholar
  11. 11.
    S. N. Ershov, J. S. Vaagen, and M. V. Zhukov, Phys. At. Nucl. 74, 1151 (2011).CrossRefGoogle Scholar
  12. 12.
    S. N. Ershov, J. S. Vaagen, and M. V. Zhukov, Phys. Rev. C 84, 064308 (2011).ADSCrossRefGoogle Scholar
  13. 13.
    S. N. Ershov, J. S. Vaagen, and M. V. Zhukov, Phys. At. Nucl. 77, 374 (2014).CrossRefGoogle Scholar
  14. 14.
    National Nuclear Data Center, http://www.nndc.bnl.gov
  15. 15.
    A. Bohr and B. R. Mottelson, Nuclear Structure (Benjamin, New York, 1969), Vol. 2.Google Scholar
  16. 16.
    F. M. Nunes, J. A. Christley, I. J. Thompson, R. C. Johnson, et al., Nucl. Phys. A 609, 43 (1996).ADSCrossRefGoogle Scholar
  17. 17.
    I. Tanihata et al., Phys. Lett. B 206, 592 (1988).ADSCrossRefGoogle Scholar
  18. 18.
    N. Fukuda et al., Phys. Rev. C 70, 054606 (2004).ADSCrossRefGoogle Scholar
  19. 19.
    A. Krieger et al., Phys. Rev. Lett. 108, 142501 (2012).ADSCrossRefGoogle Scholar
  20. 20.
    R. Palit et al., Phys. Rev. C 68, 034318 (2003).ADSCrossRefGoogle Scholar
  21. 21.
    J. S. Winfield et al., Nucl. Phys. A 683, 48 (2001).ADSCrossRefGoogle Scholar
  22. 22.
    K. T. Schmitt et al., Phys. Rev. Lett. 108, 192701 (2012).ADSCrossRefGoogle Scholar
  23. 23.
    D. J. Millener et al., Phys. Rev. C 28, 497 (1983).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  1. 1.Joint Institute for Nuclear ResearchDubnaRussia
  2. 2.Institute of Physics and TechnologyUniversity of BergenBergenNorway
  3. 3.Fundamental PhysicsChalmers University of TechnologyGöteborgSweden

Personalised recommendations