Physics of Atomic Nuclei

, Volume 77, Issue 3, pp 374–383 | Cite as

New method for solution of coupled radial Schrödinger equations: application to the Borromean two-neutron halo nucleus 22C

Nuclei Theory

Abstract

A generalized Prüfer transformation within the framework of the modified variable phase method has been used for numerical solution of coupled radial Schrödinger equations at negative energies. The method has been applied to calculations of the Borromean two-neutron halo nucleus 22C, for which an unusually large value of the matter radius has recently been extracted from measured reaction cross sections. The giant size can only be explained by an extremely loose binding that is, however, not yet known experimentally. Within the three-body cluster model we have explored the sensitivity of the 22C matter and charge radii and soft dipole mode excitations to the two-neutron separation energy.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. N. Ershov, J. S. Vaagen, and M. V. Zhukov, Phys. At. Nucl. 74, 1151 (2011).CrossRefGoogle Scholar
  2. 2.
    S. N. Ershov, J. S. Vaagen, and M. V. Zhukov, Phys. Rev. C 84, 064308 (2011).ADSCrossRefGoogle Scholar
  3. 3.
    H. Prüfer, Math. Ann. 95, 499 (1926).CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    J. H. Barret, Proc. Am.Math. Soc. 8, 510 (1957).Google Scholar
  5. 5.
    W. T. Reid, Pacif. J.Math. 8, 575 (1958).CrossRefMATHGoogle Scholar
  6. 6.
    K. Tanaka et al., Phys. Rev. Lett. 104, 062701 (2010).ADSCrossRefGoogle Scholar
  7. 7.
    G. Audi, A. H. Wapstra, and C. Thibault, Nucl. Phys. A 729, 337 (2003).ADSCrossRefGoogle Scholar
  8. 8.
    M. T. Yamashita et al., Phys. Lett. B 697, 90 (2011); Phys. Lett. B 715, 282 (2012).ADSCrossRefGoogle Scholar
  9. 9.
    H. T. Fortune and R. Sherr, Phys. Rev. C 85, 027303 (2012).ADSCrossRefGoogle Scholar
  10. 10.
    M. V. Zhukov et al., Phys. Rep. 231, 151 (1993).ADSCrossRefGoogle Scholar
  11. 11.
    M. V. Zhukov et al., Phys. Lett. B 265, 19 (1991).ADSCrossRefGoogle Scholar
  12. 12.
    B. V. Danilin, S. N. Ershov, and J. S. Vaagen, Phys. Rev. C 71, 057301 (2005).ADSCrossRefGoogle Scholar
  13. 13.
    W. Horiuchi and Y. Suzuki, Phys. Rev. C 74, 034311 (2006).ADSCrossRefGoogle Scholar
  14. 14.
    Y. Suzuki and K. Varga, Stochastic Variational Approach to Quantum-Mechanical Few-Body Problems, Lect. Notes Phys., Vol. 54 (Springer, Berlin, Heidelberg, 1998).Google Scholar
  15. 15.
    S. N. Ershov, J. S. Vaagen, and M. V. Zhukov, Phys. Rev. C 86, 034331 (2012).ADSCrossRefGoogle Scholar
  16. 16.
    A. Ozawa et al., Nucl. Phys. A 691, 599 (2001).ADSCrossRefGoogle Scholar
  17. 17.
    W. Horiuchi, Y. Suzuki, B. Abu-Ibrahim, and A. Kohama, Phys. Rev. C 75, 044607 (2007).ADSCrossRefGoogle Scholar
  18. 18.
    S. N. Ershov, B. V. Danilin, and J. S. Vaagen, Phys. Rev. C 64, 064609 (2001).ADSCrossRefGoogle Scholar
  19. 19.
    C. Forssén, V. D. Efros, and M. V. Zhukov,, Nucl. Phys. A 697, 6639 (2002).ADSCrossRefGoogle Scholar
  20. 20.
    A. Winther and K. Alder, Nucl. Phys. A 319, 518 (1979).ADSCrossRefGoogle Scholar
  21. 21.
    C. A. Bertulani and G. Baur, Nucl. Phys. A 442, 739 (1985).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  1. 1.Joint Institute for Nuclear ResearchDubnaRussia
  2. 2.Institute of Physics and TechnologyUniversity of BergenBergenNorway
  3. 3.Fundamental PhysicsChalmers University of TechnologyGöteborgSweden

Personalised recommendations