Physics of Atomic Nuclei

, Volume 76, Issue 4, pp 515–524 | Cite as

Radion production at LHC via the process of vector-boson fusion

  • R. V. Konoplich
  • S. G. Rubin
  • I. V. Svadkovsky
Elementary Particles and Fields Theory


The possibility of observing the radion in the process of vector-boson fusion at the Large Hadron Collider (LHC) in proton-proton collisions at the c.m. energy of √s = 14 TeV is studied. A region of kinematical variables where background processes can be suppressed substantially and where the process in which the production of a radion is followed by its decay to two Z bosons can be separated is found. It is shown that the radion could be discovered in the process under study at an energy scale of up to 0.75 TeV at the LHC luminosity of L = 300 fb−1.


Higgs Boson Large Hadron Collider Atomic Nucleus Invariant Mass Higgs Boson Mass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 3370, 4690 (1999).MathSciNetADSMATHCrossRefGoogle Scholar
  2. 2.
    W. D. Goldberger and M. B. Wise, Phys. Rev. Lett. 83, 4922 (1999).ADSCrossRefGoogle Scholar
  3. 3.
    W. D. Goldberger and M. B. Wise, Phys. Rev. D 60, 107505 (1999).MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    M. Battaglia, S. De Curtis, A. De Roeck, et al., Phys. Lett. B 568, 92 (2003).ADSCrossRefGoogle Scholar
  5. 5.
    P.K. Das, Phys. Rev. D 72, 055009 (2005).ADSCrossRefGoogle Scholar
  6. 6.
    K. Belotsky et al., Phys. Rev. D 68, 054027 (2003).ADSCrossRefGoogle Scholar
  7. 7.
    K. M. Belotsky et al., Phys. At. Nucl. 71, 147 (2008).CrossRefGoogle Scholar
  8. 8.
    ALEPH Collab., DELPHI Collab., L3 Collab., OPAL Collab., and the LEP Working Group for Higgs Boson Searches, Phys. Lett. B 565, 61 (2003).ADSCrossRefGoogle Scholar
  9. 9.
    CDF and CO Collabs., Tevatron New Phenomena and Higgs Working Group, arXiv:1107.5518 [hep-ex].Google Scholar
  10. 10.
    ATLAS Collab., Phys. Lett. B 710, 49 (2012).ADSCrossRefGoogle Scholar
  11. 11.
    CMS Collab., Phys. Lett. B 710, 26 (2012).ADSCrossRefGoogle Scholar
  12. 12.
    N. Arkani-Hamed, S. Dimopoulos, and G. Dvali, Phys. Lett. B 429, 263 (1998); Phys. Rev. D 59, 086004 (1999).ADSCrossRefGoogle Scholar
  13. 13.
    N. Bousson (on behalf of the ATLAS Collab.), arXiv: 1201.5256v1 [hep-ex].Google Scholar
  14. 14.
    ATLAS Collab., Phys. Lett. B 710, 538 (2012).Google Scholar
  15. 15.
    CMS Collab., Phys. Lett. B 711, 15 (2012).Google Scholar
  16. 16.
    G. F. Giudice, R. Rattazzi, and J. D. Wells, Nucl. Phys. B 595, 250 (2001).MathSciNetADSMATHCrossRefGoogle Scholar
  17. 17.
    A. Djouadi, J. Kalinowski, and M. Spira, Comput. Phys. Commun. 108, 56 (1998).ADSMATHCrossRefGoogle Scholar
  18. 18.
    J. Alwall, M. Herquet, F. Maltoni, et al., J. High Energy Phys. 1106, 128 (2011).ADSCrossRefGoogle Scholar
  19. 19.
    ATLAS Collab., Phys. Lett. B 716, 1 (2012); CMS Collab., Phys Lett. B 716, 30 (2012).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • R. V. Konoplich
    • 1
    • 2
  • S. G. Rubin
    • 3
  • I. V. Svadkovsky
    • 3
  1. 1.Department of PhysicsNew York UniversityNew YorkUSA
  2. 2.Department of PhysicsManhattan CollegeRiverdaleUSA
  3. 3.National Research Nuclear University MEPhIMoscowRussia

Personalised recommendations