Physics of Atomic Nuclei

, Volume 76, Issue 4, pp 469–475 | Cite as

Astrophysical manifestations of clumps of cold dark matter

  • K. M. Belotsky
  • A. A. Kirillov
  • M. Yu. Khlopov
Elementary Particles and Fields Theory


Small-scale structures (clumps) of dark matter may manifest themselves owing to the annihilation of dark-matter particles in them as pointlike gamma-ray sources. In view of this, investigation into respective effects on the basis of data on unidentified pointlike gamma-ray sources is of importance. It is shown that the existing uncertainties in the description of physical properties of dark-matter particles (their annihilation cross section) and in the distribution of their density in the clumps are of crucial importance; therefore, an analysis of data from the observation of pointlike gamma-ray sources makes it possible to impose constraints on the values of respective uncertain parameters (that is, to single out preferable ones). It is considered that the rate of annihilation of dark-matter particles in the clumps may be enhanced both owing to a higher density and owing to the growth of the cross section at low relative velocities of dark-matter particles in the clumps. In particular, dark-matter particles may have self-interaction of the Coulomb type, and this leads to the enhancement of the annihilation rate because of the Sommerfeld-Sakharov effect. It is shown that the heavy-neutrino model featuring an extra interaction can explain partly Fermi and EGRET data on unidentified pointlike gamma-ray sources. It is indicated that the motion of gamma-ray sources over the celestial sphere can be noticed for several clumps within several years of observations.


Atomic Nucleus Spectral Index Cold Dark Matter Annihilation Cross Section Heavy Neutrino 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. E. Gunn et al., Astrophys. J. 223, 1015 (1978).ADSCrossRefGoogle Scholar
  2. 2.
    Ya. B. Zel’dovich et al., Sov. J. Nucl. Phys. 31, 664 (1980).Google Scholar
  3. 3.
    R. V. Konoplich and M. Yu. Khlopov, Phys. At. Nucl. 57, 425 (1994).Google Scholar
  4. 4.
    G. Jungman et al., Phys. Rep. 267, 195 (1996).ADSCrossRefGoogle Scholar
  5. 5.
    V. S. Berezinsky et al., Phys. Lett. B 294, 221 (1992).ADSCrossRefGoogle Scholar
  6. 6.
    V. Berezinsky et al., Phys. Rev. D 68, 103003 (2003).ADSCrossRefGoogle Scholar
  7. 7.
    J. Diemand et al., Nature 433, 389 (2005).ADSCrossRefGoogle Scholar
  8. 8.
    K.M. Belotsky and A.M. Galper, astro-ph/0507118.Google Scholar
  9. 9.
    R. Aloisio et al., Astrophys. J. 601, 47 (2004).ADSCrossRefGoogle Scholar
  10. 10.
    J. Diemand and B. Moore, Adv. Sci. Lett. 4, 297 (2011).CrossRefGoogle Scholar
  11. 11.
    D. Merritt et al., Astron. J. 132, 2685 (2006).ADSCrossRefGoogle Scholar
  12. 12.
    J. F. Navarro, C. S. Frenk, and S. D. M. White, Astrophys. J. 490, 493 (1997).ADSCrossRefGoogle Scholar
  13. 13.
    A. Sommerfeld, Ann. Phys. 403, 257 (1931).CrossRefGoogle Scholar
  14. 14.
    A. D. Sakharov, Zh. Eksp. Teor. Fiz. 18, 631 (1948).Google Scholar
  15. 15.
    K.M. Belotsky et al., Phys. At. Nucl. 71, 147 (2008).CrossRefGoogle Scholar
  16. 16.
  17. 17.
    W. B. Atwood et al. (The Fermi LAT Collab.), Astrophys. J. 697, 1071 (2009).ADSCrossRefGoogle Scholar
  18. 18.
    K. G. Begeman, A. H. Broeils, and R. H. Sanders, Mon. Not. R. Astron. soc. 249, 523 (1991).ADSGoogle Scholar
  19. 19.
    A. Burkert, Astrophys. J. Lett. 447, 25 (1995).ADSCrossRefGoogle Scholar
  20. 20.
    J. Einasto, Tartu Astron. Obsr. Teated 17, 1 (1965).ADSGoogle Scholar
  21. 21.
    B. Moore et al., Mon. Not. R. Astron. Soc. 310, 1147 (1999).ADSCrossRefGoogle Scholar
  22. 22.
    G. Bertonea et al., Phys. Rep. 405, 279 (2005).ADSCrossRefGoogle Scholar
  23. 23.
    K. M. Belotsky, M. Yu. Khlopov, and K. I. Shibaev, Phys. At. Nucl. 65, 382 (2002).CrossRefGoogle Scholar
  24. 24.
    E. A. Baltz and D. Hooper, JCAP 0507, 001 (2005).ADSCrossRefGoogle Scholar
  25. 25.
    F. Burnell and G. D. Kribs, Phys. Rev. D 73, 015001 (2006).ADSCrossRefGoogle Scholar
  26. 26.
    G. Servant and T. M. P. Tait, Nucl. Phys. B 650, 391 (2003).ADSCrossRefGoogle Scholar
  27. 27.
    K. M. Belotsky, M. Yu. Khlopov, and K. I. Shibaev, Grav. Cosmol. 12, 93 (2006).ADSGoogle Scholar
  28. 28.
    M. Yu. Khlopov, JETP Lett. 83, 1 (2006).CrossRefGoogle Scholar
  29. 29.
    Z. Ahmed et al. (The CDMS Collab.), Phys.Rev. Lett. 102, 011301 (2009).ADSCrossRefGoogle Scholar
  30. 30.
    J. A. Esposito et al., Astrophys. J. Suppl. 123, 203 (1999).ADSCrossRefGoogle Scholar
  31. 31.
    A.M. Galper et al., arXiv: 1201.2490 [astro-ph].Google Scholar
  32. 32.
    J.-M. Casandjian and I. A. Grenier, Astron. Astrophys. 489, 849 (2008).ADSCrossRefGoogle Scholar
  33. 33.
    R. C. Hartman et al., Astrophys. J. Suppl. 123, 79 (1999).ADSCrossRefGoogle Scholar
  34. 34.
    A. A. Abdo et al. (The Fermi LAT Collab.), Astrophys. J. Suppl. 188, 405 (2010).ADSCrossRefGoogle Scholar
  35. 35.
    K.M. Belotsky et al., Grav. Cosmol. 17, 27 (2011).ADSzbMATHCrossRefGoogle Scholar
  36. 36.
    K.M. Belotsky et al., Astropart. Phys. 35, 28 (2011).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • K. M. Belotsky
    • 1
  • A. A. Kirillov
    • 1
  • M. Yu. Khlopov
    • 1
    • 2
  1. 1.National Research Nuclear University MEPhIMoscowRussia
  2. 2.Laboratoire APC, Bâtiment CondorcetUniversité Paris Diderot-Paris 7Paris Cedex 13France

Personalised recommendations