Physics of Atomic Nuclei

, Volume 76, Issue 3, pp 286–293 | Cite as

Optimizing the rapidity limit for nuclear stopping in intermediate energy heavy-ion collisions

Nuclei Theory
  • 66 Downloads

Abstract

A systematic study regarding the role of participant matter and spectator matter in nuclear stopping using isospin-dependent quantum molecular dynamics model is presented. The simulations have been carried out with soft equation of state along with the reduced isospin-dependent cross section to study the effect of different types and sizes of rapidity distributions on nuclear stopping for the whole colliding geometry with density-dependent symmetry energy. In addition to that, we attempt to investigate the role of isospin in heavy-ion collisions by calculating the individual contribution of neutrons and protons in nuclear stopping for different systems having different isotopic content.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Scheid, H. Müller, and W. Greiner,Phys. Rev. Lett. 32, 741 (1974).ADSCrossRefGoogle Scholar
  2. 2.
    R. K. Puri et al., Phys. Rev. C 54, R28 (1996).ADSCrossRefGoogle Scholar
  3. 3.
    R. K. Puri and J. Aichelin, J. Comput. Phys. 162, 245 (2000).ADSMATHCrossRefGoogle Scholar
  4. 4.
    Y. K. Vermani and R. K. Puri, Europhys. Lett. 85, 62001 (2009).ADSCrossRefGoogle Scholar
  5. 5.
    Y. K. Vermani et al., J. Phys. G 37, 015105 (2010).ADSCrossRefGoogle Scholar
  6. 6.
    J. M. Lattimer and M. Prakash, Astrophys. J. 550, 426 (2001).ADSCrossRefGoogle Scholar
  7. 7.
    G. Lehaut et al., Phys. Rev. Lett. 104, 232701 (2010).ADSCrossRefGoogle Scholar
  8. 8.
    V. Kaur et al., Nucl. Phys. A 861, 37 (2011).ADSCrossRefGoogle Scholar
  9. 9.
    W. Bauer, Phys. Rev. Lett. 61, 2534 (1988).ADSCrossRefGoogle Scholar
  10. 10.
    G. F. Bertsch, G. E. Brown, V. Koch, and B.-A. Li, Nucl. Phys. A 490, 745 (1988).ADSCrossRefGoogle Scholar
  11. 11.
    D. T. Khoa et al., Nucl. Phys. A 548, 102 (1992).ADSCrossRefGoogle Scholar
  12. 12.
    S.W. Huang et al., Phys. Lett. B 298, 41 (1993).ADSCrossRefGoogle Scholar
  13. 13.
    G. Batko et al., J. Phys. G 20, 461 (1994).ADSCrossRefGoogle Scholar
  14. 14.
    Y. K. Vermani et al., Phys. Rev. C 79, 064613 (2009).ADSCrossRefGoogle Scholar
  15. 15.
    B.-A. Li et al., Phys. Rev. C 71, 054603 (2005).ADSCrossRefGoogle Scholar
  16. 16.
    X.-F. Luo et al., Phys. Rev. C 76, 044902 (2007).ADSCrossRefGoogle Scholar
  17. 17.
    H. Johnson, T. White, J. Winger, et al., Phys. Lett. B 371, 186 (1996).ADSCrossRefGoogle Scholar
  18. 18.
    L.-Q. Feng and L.-Z. Xia, Chin. Phys. Lett. 19, 321 (2002).ADSCrossRefGoogle Scholar
  19. 19.
    J.-Y. Liu, W.-J. Guo, Y. Z. Xing, et al., Phys. Rev. C 70, 034610 (2004).ADSCrossRefGoogle Scholar
  20. 20.
    S. Kumar, S. Kumar, and R. K. Puri,Phys. Rev.C 81, 014601 (2010).ADSCrossRefGoogle Scholar
  21. 21.
    C. Xu, B.-A. Li, and L.-W. Chen, Phys. Rev. C 82, 054607 (2010).ADSCrossRefGoogle Scholar
  22. 22.
    B.-A. Li, L.-W. Chen, and C. M. Ko, Phys. Rep. 464, 113 (2008).ADSCrossRefGoogle Scholar
  23. 23.
    D. V. Shetty, S. J. Yennello, and G. A. Souliotis, Phys. Rev. C 75, 034602 (2007).ADSCrossRefGoogle Scholar
  24. 24.
    B.-A. Li, C.M. Ko, and Z. Ren, Phys. Rev. Lett. 78, 1644 (1997).ADSCrossRefGoogle Scholar
  25. 25.
    M. B. Tsang, Y. Zhang, P. Danielewicz, et al., Phys. Rev. Lett. 102, 122701 (2009).ADSCrossRefGoogle Scholar
  26. 26.
    H. Heiselberg and M. Hjorth-Jensen, Phys. Rep. 328, 237 (2000).ADSCrossRefGoogle Scholar
  27. 27.
    S. Kumar, V. Kaur, and S. Kumar, Cent. Eur. J. Phys. 9, 986 (2011).CrossRefGoogle Scholar
  28. 28.
    J. D. Bowman, W. J. Swiatecki, and C. F. Tsang, Lawrence Berkeley Laboratory Report No. LBL-2908 (1973, unpublished).Google Scholar
  29. 29.
    G. D. Westfall et al., Phys. Rev. Lett. 37, 1202 (1976).ADSCrossRefGoogle Scholar
  30. 30.
    C. Hartnack et al., Eur. Phys. J. A 1, 151 (1998).ADSCrossRefGoogle Scholar
  31. 31.
    S. Gautam et al., J. Phys. G 37, 085102 (2010).ADSCrossRefGoogle Scholar
  32. 32.
    V. Kaur et al., Phys. Lett. B 697, 512 (2011).ADSCrossRefGoogle Scholar
  33. 33.
    S. Gautam et al., Phys. Rev. C 83, 034606 (2011)ADSCrossRefGoogle Scholar
  34. 34.
    S. Gautam et al., Phys. Rev. C 83, 014603 (2011).ADSCrossRefGoogle Scholar
  35. 35.
    J. Aichelin, Phys. Rept. 202, 233 (1991).ADSCrossRefGoogle Scholar
  36. 36.
    E. Lehmann et al., Phys. Rev. C 51, 2113 (1995).ADSCrossRefGoogle Scholar
  37. 37.
    E. Lehmann et al., Prog. Part. Nucl. Phys. 30, 219 (1993).ADSCrossRefGoogle Scholar
  38. 38.
    R. K. Puri et al., Nucl. Phys. A 575 733 (1994).ADSCrossRefGoogle Scholar
  39. 39.
    R. K. Puri and R. K. Gupta, Phys. Rev. C 45, 1837 (1997).ADSCrossRefGoogle Scholar
  40. 40.
    R. K. Puri et al., Phys. Rev. C 43, 315 (1991).ADSCrossRefGoogle Scholar
  41. 41.
    R. K. Puri and N. K. Dhiman, Eur. Phys. J. A 23, 429 (2005).ADSCrossRefGoogle Scholar
  42. 42.
    J.-Y. Liu et al., Phys. Rev. Lett. 86, 975 (2001).ADSCrossRefGoogle Scholar
  43. 43.
    J. K. Dhawan, N. Dhiman, A.D. Sood, and R. K. Puri, Phys. Rev. C 74, 057901 (2006).ADSCrossRefGoogle Scholar
  44. 44.
    P. B. Gossiaux, R. K. Puri, C. Hartnack, and J. Aichelin, Nucl. Phys. A 619, 379 (1997).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  1. 1.School of Physics and Materials ScienceThapar UniversityPatialaIndia

Personalised recommendations