Physics of Atomic Nuclei

, Volume 75, Issue 5, pp 613–620 | Cite as

Core collapse supernovae in the QCD phase diagram

  • T. Fischer
  • D. Blaschke
  • M. Hempel
  • T. Klähn
  • R. Łastowiecki
  • M. Liebendörfer
  • G. Martínez-Pinedo
  • G. Pagliara
  • I. Sagert
  • F. Sandin
  • J. Schaffner-Bielich
  • S. Typel
Elementary Particles and Fields Theory

Abstract

We compare two classes of hybrid equations of state with a hadron-to-quark matter phase transition in their application to core collapse supernova simulations. The first one uses the quark bag model and describes the transition to three-flavor quark matter at low critical densities. The second one employs a Polyakov-loop extended Nambu-Jona-Lasinio (PNJL) model with parameters describing a phase transition to two-flavor quark matter at higher critical densities. These models possess a distinctly different temperature dependence of their transition densities which turns out to be crucial for the possible appearance of quark matter in supernova cores. During the early post-bounce accretion phase quark matter is found only if the phase transition takes place at sufficiently low densities as in the study based on the bag model. The increase critical density with increasing temperature, as obtained for our PNJL parametrization, prevents the formation of quark matter. The further evolution of the core collapse supernova as obtained applying the quark bag model leads to a structural reconfiguration of the central protoneutron star where, in addition to a massive pure quark matter core, a strong hydrodynamic shock wave forms and a second neutrino burst is released during the shock propagation across the neutrinospheres. We discuss the severe constraints in the freedom of choice of quark matter models and their parametrization due to the recently observed 2M pulsar and their implications for further studies of core collapse supernovae in the QCD phase diagram.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. M. Lattimer and F. D. Swesty, Nucl. Phys. A 535, 331 (1991).ADSCrossRefGoogle Scholar
  2. 2.
    H. Shen, H. Toki, K. Oyamatsu, and K. Sumiyoshi, Prog. Theor. Phys. 100, 1013 (1998).ADSCrossRefGoogle Scholar
  3. 3.
    S. Borsanyi et al. (Wuppertal-Budapest Collab.), J. High Energy Phys. 1009, 073 (2010).ADSCrossRefGoogle Scholar
  4. 4.
    A. Bazavov and P. Petreczky (HotQCD Collab.), J. Phys. G 38, 124099 (2011).ADSCrossRefGoogle Scholar
  5. 5.
    A. Andronic et al., Nucl. Phys. A 837, 65 (2010).ADSCrossRefGoogle Scholar
  6. 6.
    L. McLerran and R. D. Pisarski, Nucl. Phys. A 796, 83 (2007).ADSCrossRefGoogle Scholar
  7. 7.
    D. B. Blaschke, F. Sandin, V. V. Skokov, and S. Typel, Acta Phys. Polon. Suppl. 3, 741 (2010).Google Scholar
  8. 8.
    T. Klä hn, D. Blaschke, and F. Weber, arXiv:1101.6061 [nucl-th].Google Scholar
  9. 9.
    C. E. DeTar and J. F. Donoghue, Ann. Rev. Nucl. Part. Sci. 33, 235 (1983).ADSCrossRefGoogle Scholar
  10. 10.
    M. Buballa, Phys. Rep. 407, 205 (2005).ADSCrossRefGoogle Scholar
  11. 11.
    D. Blaschke, S. Fredriksson, H. Grigorian, A. M. Öztas, and F. Sandin, Phys. Rev. D 72, 065020 (2005).ADSCrossRefGoogle Scholar
  12. 12.
    F. Sandin and D. Blaschke, Phys. Rev. D 75, 125013 (2007).ADSCrossRefGoogle Scholar
  13. 13.
    M. G. Alford, A. Schmitt, K. Rajagopal, and T. Schafer, Rev. Mod. Phys. 80, 1455 (2008).ADSCrossRefGoogle Scholar
  14. 14.
    S. Roessner, C. Ratti, and W. Weise, Phys. Rev. D 75, 034007 (2007).ADSCrossRefGoogle Scholar
  15. 15.
    N. K. Glendenning, Phys. Rev. D 46, 1274 (1992).ADSCrossRefGoogle Scholar
  16. 16.
    B. W. Mintz, E. S. Fraga, G. Pagliara, and J. Schaffner-Bielich, Phys. Rev. D 81, 123012 (2010).ADSCrossRefGoogle Scholar
  17. 17.
    A. Mezzacappa and S. W. Bruenn, Astrophys. J. 405, 637 (1993).ADSCrossRefGoogle Scholar
  18. 18.
    A. Mezzacappa and S. W. Bruenn, Astrophys. J. 405, 669 (1993).ADSCrossRefGoogle Scholar
  19. 19.
    A. Mezzacappa and S. W. Bruenn, Astrophys. J. 410, 740 (1993).ADSCrossRefGoogle Scholar
  20. 20.
    M. Liebendoerfer et al., Phys. Rev. D 63, 103004 (2001).ADSCrossRefGoogle Scholar
  21. 21.
    M. Liebendoerfer, A. Mezzacappa, and F.-K. Thielemann, Phys. Rev. D 63, 104003 (2001).MathSciNetADSCrossRefGoogle Scholar
  22. 22.
    M. Liebendoerfer et al., Astrophys. J. Suppl. 150, 263 (2004).ADSCrossRefGoogle Scholar
  23. 23.
    J. M. LeBlanc and J. R. Wilson, Astrophys. J. 161, 541 (1970).ADSCrossRefGoogle Scholar
  24. 24.
    S. G. Moiseenko and G. S. Bisnovatyi-Kogan, Astrophys. Space Sci. 311, 191 (2007).ADSMATHCrossRefGoogle Scholar
  25. 25.
    T. Takiwaki, K. Kotake, and K. Sato, Astrophys. J. 691, 1360 (2009).ADSCrossRefGoogle Scholar
  26. 26.
    A. Burrows, E. Livne, L. Dessart, et al., New Astron. Rev. 50, 487 (2006).ADSCrossRefGoogle Scholar
  27. 27.
    H. A. Bethe and J. R. Wilson, Astrophys. J. 295, 14 (1985).ADSCrossRefGoogle Scholar
  28. 28.
    F. S. Kitaura, H.-Th. Janka, and W. Hillebrandt, Astron. Astrophys. 450, 345 (2006).ADSCrossRefGoogle Scholar
  29. 29.
    T. Fischer, S. C. Whitehouse, A. Mezzacappa, F.-K. Thielemann, and M. Liebendörfer, Astron. Astrophys. 517, A80 (2010).ADSCrossRefGoogle Scholar
  30. 30.
    K. Nomoto, in Supernova Remnants and their Xray Emission, Proceedings of the IAU Symposium No. 101, Ed. by J. Danziger and P. Gorenstein (Reidel, Dordrecht, 1983), p. 139.CrossRefGoogle Scholar
  31. 31.
    K. Nomoto, Astrophys. J. 277, 791 (1984).ADSCrossRefGoogle Scholar
  32. 32.
    K. Nomoto, Astrophys. J. 322, 206 (1987).ADSCrossRefGoogle Scholar
  33. 33.
    D. S. Miller, J. R. Wilson, and R. W. Mayle, Astrophys. J. 415, 278 (1993).ADSCrossRefGoogle Scholar
  34. 34.
    M. Herant, W. Benz, W. R. Hix, et al., Astrophys. J. 435, 339 (1994).ADSCrossRefGoogle Scholar
  35. 35.
    A. Burrows, J. Hayes, and B. A. Fryxell, Astrophys. J. 450, 830 (1995).ADSCrossRefGoogle Scholar
  36. 36.
    H.-T. Janka and E. Mueller, Astron. Astrophys. 306, 167 (1996).ADSGoogle Scholar
  37. 37.
    S. W. Bruenn et al., J. Phys. Conf. Ser. 180, 012018 (2009).ADSCrossRefGoogle Scholar
  38. 38.
    A. Marek and H.-Th. Janka, Astrophys. J. 694, 664 (2009).ADSCrossRefGoogle Scholar
  39. 39.
    I. Sagert et al., Phys. Rev. Lett. 102, 081101 (2009).ADSCrossRefGoogle Scholar
  40. 40.
    T. Fischer et al., Class. Quantum. Grav. 27, 114102 (2010).ADSCrossRefGoogle Scholar
  41. 41.
    T. Fischer et al., Astrophys. J. Suppl. 194, 39 (2011).ADSCrossRefGoogle Scholar
  42. 42.
    P. Demorest, T. Pennucci, S. Ransom, et al., Nature 467, 1081 (2010).ADSCrossRefGoogle Scholar
  43. 43.
    F. Özel, D. Psaltis, S. Ransom, et al., Astrophys. J. Lett. 724, L199 (2010).ADSCrossRefGoogle Scholar
  44. 44.
    S. Weissenborn, I. Sagert, G. Pagliara, M. Hempel, and J. Schaffner-Bielich, Astrophys. J. 740, L14 (2011).ADSCrossRefGoogle Scholar
  45. 45.
    T. Klähn et al., Phys. Lett. B 654, 170 (2007).ADSCrossRefGoogle Scholar
  46. 46.
    S. E. Woosley, A. Heger, and T. A. Weaver, Rev. Mod. Phys. 74, 1015 (2002).ADSCrossRefGoogle Scholar
  47. 47.
    D. Blaschke, J. Berdermann, and R. Łastowiecki, Prog. Theor. Phys. Suppl. 186, 81 (2010).ADSMATHCrossRefGoogle Scholar
  48. 48.
    T. Takahara and K. Sato, Astrophys. J. 335, 301 (1988).ADSCrossRefGoogle Scholar
  49. 49.
    K. S. Hirata et al., Phys. Rev. D 38, 448 (1988).MathSciNetADSCrossRefGoogle Scholar
  50. 50.
    N. A. Gentile, M. B. Aufderheide, G. J. Mathews, et al., Astrophys. J. 414, 701 (1993).ADSCrossRefGoogle Scholar
  51. 51.
    H. Grigorian, B. Hermann, and F. Weber, Phys. Part. Nucl. 30, 156 (1999).CrossRefGoogle Scholar
  52. 52.
    A. Ohnishi, H. Ueda, T. Z. Nakano, et al., arXiv:1201.6206 [nucl-th].Google Scholar
  53. 53.
    B. Dasgupta et al., Phys. Rev. D 81, 103005 (2010).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • T. Fischer
    • 1
    • 2
  • D. Blaschke
    • 3
    • 4
  • M. Hempel
    • 5
  • T. Klähn
    • 3
  • R. Łastowiecki
    • 3
  • M. Liebendörfer
    • 5
  • G. Martínez-Pinedo
    • 1
  • G. Pagliara
    • 6
  • I. Sagert
    • 6
  • F. Sandin
    • 7
    • 8
  • J. Schaffner-Bielich
    • 6
  • S. Typel
    • 1
    • 9
  1. 1.GSIHelmholtzzentrum für Schwerionenforschung GmbHDarmstadtGermany
  2. 2.Technische Universität DarmstadtDarmstadtGermany
  3. 3.Institute for Theoretical PhysicsUniversity of WroclawWroclawPoland
  4. 4.Bogoliubov Laboratory of Theoretical PhysicsJINRDubnaRussia
  5. 5.Department of PhysicsUniversity of BaselBaselSwitzerland
  6. 6.Institut für Theoretische PhysikRuprecht-Karls-UniversitätHeidelbergGermany
  7. 7.Department of Computer Science and Electrical Engineering, EISLABLuleå Tekniska UniversitetLuleåSweden
  8. 8.Département AGO-IFPAUniversité LiegeLiègeBelgium
  9. 9.Excellence Cluster UniverseTechnische Universität MünchenMünchenGermany

Personalised recommendations