Advertisement

Physics of Atomic Nuclei

, Volume 75, Issue 8, pp 1006–1013 | Cite as

Formation of a 4c tetraquark in J/ψ-meson pair production at LHC

  • A. V. Berezhnoy
  • A. K. Likhoded
  • A. V. Luchinsky
  • A. A. Novoselov
Elementary Particles and Fields Theory

Abstract

Cross sections for -meson pair production in proton-proton interaction at the c.m. collision energy of \(\sqrt s = 7\) TeV were theoretically predicted under conditions of various kinematical cuts. The possible contribution to this process from the decays of 4c tetraquarks, new hypothetic particles consisting of two valence c quarks and two valence \(\bar c\) antiquarks, was studied. It is shown that at least one such state (tensor 4c tetraquark) can in principle be observed experimentally under conditions of the LNCb experiment.

Keywords

Transverse Momentum Atomic Nucleus Invariant Mass Pair Production Heavy Baryon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    NA3 Collab. (J. Badier et al.), Phys. Lett. B 114, 457 (1982).CrossRefGoogle Scholar
  2. 2.
    V. G. Kartvelishvili and Sh. M. Esakiya, Sov. J. Nucl. Phys. 38, 430 (1982).Google Scholar
  3. 3.
    B. Humpert and P. Mery, Z. Phys. C 20, 83 (1983).ADSCrossRefGoogle Scholar
  4. 4.
    V. V. Kiselev, A. K. Likhoded, S. R. Slabospitskii, and A. V. Tkabladze, Sov. J. Nucl. Phys. 49, 682 (1989).Google Scholar
  5. 5.
    C.-F. Qiao, L.-P. Sun, and P. Sun, J. Phys. G 37, 075019 (2010).ADSCrossRefGoogle Scholar
  6. 6.
    P. Ko, C. Yu, and J. Lee, J. High Energy Phys. 1101, 070 (2011).ADSCrossRefGoogle Scholar
  7. 7.
    N. Drenska, R. Faccini, F. Piccinini, et al., Riv. Nuovo Cimento 033, 633 (2010).Google Scholar
  8. 8.
    F. Wick, PoS (EPS-HEP 2009), 085 (2009).Google Scholar
  9. 9.
    X. Liu, Z.-G. Luo, and S.-L. Zhu, Phys. Lett. B 699, 341 (2011); arXiv:1011.1045 [hep-ph].ADSCrossRefGoogle Scholar
  10. 10.
    V. V. Braguta, A. K. Likhoded, and A. V. Luchinsky, Phys. Rev. D 72, 094018 (2005).ADSCrossRefGoogle Scholar
  11. 11.
    F. Maltoni and A. D. Polosa, Phys. Rev. D 70, 054014 (2004).ADSCrossRefGoogle Scholar
  12. 12.
    R. Mertig, M. Bohm, and A. Denner, Comput. Phys. Commun. 64, 345 (1999).MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    M. I. Krivoruchenko, Phys. Usp. 37, 601 (1994).ADSCrossRefGoogle Scholar
  14. 14.
    A. V. Berezhnoy, V. V. Kiselev, A. K. Likhoded, and A. I. Onishchenko, Phys. Rev. D 57, 4385 (1998).ADSCrossRefGoogle Scholar
  15. 15.
    A. V. Berezhnoy, V. V. Kiselev, and A. K. Likhoded, Z. Phys. A 356, 79 (1996).ADSCrossRefGoogle Scholar
  16. 16.
    R. Li, Y.-J. Zhang, and K.-T. Chao, Phys. Rev. D 80, 014020 (2009).ADSCrossRefGoogle Scholar
  17. 17.
    V. V. Kiselev, A. K. Likhoded, O. N. Pakhomova, and V. A. Saleev, Phys. Rev. D 66, 034030 (2002).ADSCrossRefGoogle Scholar
  18. 18.
  19. 19.
    J. Pumplin, D. R. Stump, J. Huston, et al., J. High Energy Phys. 0207, 012 (2002); D. Stump, J. Huston, J. Pumplin, et al., J. High Energy Phys. 0310, 046 (2003).ADSCrossRefGoogle Scholar
  20. 20.
    S. S. Gershtein, V. V. Kiselev, A. K. Likhoded, and A. I. Onishchenko, Phys. Rev. D 62, 054021 (2000).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • A. V. Berezhnoy
    • 1
  • A. K. Likhoded
    • 2
  • A. V. Luchinsky
    • 2
  • A. A. Novoselov
    • 2
    • 3
  1. 1.Skobeltsyn Institute of Nuclear PhysicsMoscow State UniversityMoscowRussia
  2. 2.Institute for High Energy PhysicsProtvino, Moscow oblastRussia
  3. 3.Moscow Institute for Physics and TechnologyDolgoprudnyi, Moscow oblastRussia

Personalised recommendations