Advertisement

Physics of Atomic Nuclei

, 74:1277 | Cite as

Self-consistent theory of finite Fermi systems and radii of nuclei

  • E. E. SapersteinEmail author
  • S. V. Tolokonnikov
Nuclei Theory

Abstract

Present-day self-consistent approaches in nuclear theory were analyzed from the point of view of describing distributions of nuclear densities. The generalized method of the energy density functional due to Fayans and his coauthors (this is the most successful version of the self-consistent theory of finite Fermi systems) was the first among the approaches under comparison. The second was the most successful version of the Skyrme-Hartree-Fock method with the HFB-17 functional due to Goriely and his coauthors. Charge radii of spherical nuclei were analyzed in detail. Several isotopic chains of deformed nuclei were also considered. Charge-density distributions ρ ch(r) were calculated for several spherical nuclei. They were compared with model-independent data extracted from an analysis of elastic electron scattering on nuclei.

Keywords

Atomic Nucleus Charge Radius Fermi System Magic Nucleus Skyrme Force 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    A. B. Migdal, Theory of Finite Fermi Systems and Applications to Atomic Nuclei (Nauka, Moscow, 1965; Intersci., New York, 1967).Google Scholar
  2. 2.
    L. D. Landau, Zh. Eksp. Teor. Fiz. 35, 97 (1958) [Sov. Phys. JETP 8, 70 (1958)].Google Scholar
  3. 3.
    G.G. Bunatyan and M. A. Mikulinskii, Yad. Fiz. 1, 38 (1965) [Sov. J. Nucl. Phys. 1, 26 (1965)].Google Scholar
  4. 4.
    E. E. Sapershtein, M. A. Troitskii, Yad. Fiz. 1, 400 (1965) [Sov. J. Nucl. Phys. 1, 284 (1965)].Google Scholar
  5. 5.
    V. A. Khodel’, Pis’ma Zh. Eksp. Teor. Fiz. 16, 410 (1972) [JETP Lett. 16, 291 (1972)].Google Scholar
  6. 6.
    V. A. Khodel’, Yad. Fiz. 23, 282 (1976) [Sov. J. Nucl. Phys. 23, 147 (1976)].Google Scholar
  7. 7.
    A. Bohr and B. R. Mottelson, Nuclear Structure, vol. 2: Nuclear Deformations, (Mir, Moscow, 1977; Benjamin, New York, Amsterdam, 1974).Google Scholar
  8. 8.
    V. G. Soloviev, Theory of Complex Nuclei (Nauka, Moscow, 1971; Pergamon Press, Oxford, 1976).Google Scholar
  9. 9.
    S. A. Fayans and V. A. Khodel’, Pis’ma Zh. Eksp. Teor. Fiz. 17, 633 (1973) [JETP Lett. 17, 444 (1973)].Google Scholar
  10. 10.
    D. Vautherin and D. M. Brink, Phys. Rev. C 5, 626 (1972).ADSCrossRefGoogle Scholar
  11. 11.
    S. Goriely, N. Chamel, and J. M. Pearson, Phys. Rev. Lett. 102, 152503 (2009).ADSCrossRefGoogle Scholar
  12. 12.
    J. Dechargé and D. Gogny, Phys. Rev. C 21, 1568 (1980).ADSCrossRefGoogle Scholar
  13. 13.
    S. Goriely, S. Hilaire, M. Girod, and S. Péru, Phys. Rev. Lett. 102, 242501 (2009).ADSCrossRefGoogle Scholar
  14. 14.
    W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).MathSciNetADSCrossRefGoogle Scholar
  15. 15.
    P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).MathSciNetADSCrossRefGoogle Scholar
  16. 16.
    P. Ring and P. Schuck, The Nuclear Many-Body Problem (Springer, Berlin, 1980).Google Scholar
  17. 17.
    V. A. Khodel and E. E. Saperstein, Phys. Rep. 92, 183 (1982).ADSCrossRefGoogle Scholar
  18. 18.
    A. B. Migdal, Theory of Finite Fermi Systems and Applications to Atomic Nuclei, 2nd ed. (Nauka, Moscow, 1981).Google Scholar
  19. 19.
    V. A. Khodel, E. E. Saperstein, and M. V. Zverev, Nucl. Phys. A 465, 397 (1987).ADSCrossRefGoogle Scholar
  20. 20.
    P. Klüpfel, P.-G. Reinhard, T. J. Bürvenich, and J. A. Maruhn, Phys. Rev. C 79, 034310 (2009).ADSCrossRefGoogle Scholar
  21. 21.
    M. V. Zverev, V. I. Kuprikov, E. E. Sapershtein, et al., Yad. Fiz. 46, 466 (1987) [Sov. J. Nucl. Phys. 46, 249 (1987)].Google Scholar
  22. 22.
    A. V. Smirnov, S. V. Tolokonnikov, and S. A. Fayans, Yad. Fiz. 48, 1661 (1988) [Sov. J. Nucl. Phys. 48, 995 (1988)].Google Scholar
  23. 23.
    S. T. Belyaev, A. V. Smirnov, S. V. Tolokonnikov, and S. A. Fayans, Yad. Fiz. 45, 1263 (1987) [Sov. J. Nucl. Phys. 45, 783 (1987)].Google Scholar
  24. 24.
    S. A. Fayans, E. L. Trykov, and D. Zawischa, Nucl. Phys. A 568, 523 (1994).ADSCrossRefGoogle Scholar
  25. 25.
    D. J. Horen, G. R. Satchler, S. A. Fayans, and E. L. Trykov, Nucl. Phys. A 600, 193 (1996).ADSCrossRefGoogle Scholar
  26. 26.
    S. A. Fayans and D. Zawischa, Phys. Lett. B 383, 19 (1996).ADSCrossRefGoogle Scholar
  27. 27.
    S. A. Fayans, Pis’ma Zh. Eksp. Teor. Fiz. 68, 161 (1998) [JETP Lett. 68, 169 (1998)].Google Scholar
  28. 28.
    S. A. Fayans, S. V. Tolokonnikov, E. L. Trykov, and D. Zawischa, Nucl. Phys. A 676, 49 (2000).ADSCrossRefGoogle Scholar
  29. 29.
    S. V. Tolokonnikov and E. E. Saperstein, Yad. Fiz. 73, 1731 (2010) [Phys. At. Nucl. 73, 1684 (2010)].Google Scholar
  30. 30.
    H. Grawe, in Proceedings of the Workshop on Nuclear Structure in 78 Ni Region, Leuven, 2009, Mar. 9–11.Google Scholar
  31. 31.
    I. Angeli, Recommended Values of Nuclear Charge Radii, http://cdfe.sinp.msu.ru/services/radchart/radhelp.html#rad (2008).
  32. 32.
    Yu. Gangrsky and K. Marinova, Nuclear Charge Radii, http://cdfe.sinp.msu.ru/services/radchart/radhelp.html#rad (2008).
  33. 33.
    Database of the Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics, http://cdfe.sinp.msu.ru/services/radchart/radmain.html
  34. 34.
    H. de Vries, C.W. de Jager, and C. de Vries, At. Data Nucl. Data Tables 36, 495 (1987).ADSCrossRefGoogle Scholar
  35. 35.
    Yu. B. Ivanov, A. P. Platonov, and V. A. Khodel’, Yad. Fiz. 47, 1559 (1988) [Sov. J. Nucl. Phys. 47, 988 (1988)].Google Scholar
  36. 36.
    G. Audi, A. H. Wapstra, and C. Thibault, Nucl. Phys. A 729, 337 (2003).ADSCrossRefGoogle Scholar
  37. 37.
  38. 38.
    W. Bertozzi, J. Friar, J. Heisenberg, and J.W. Negele, Phys. Lett. B 41, 408 (1972).ADSCrossRefGoogle Scholar
  39. 39.
    H. Chandra and G. Sauer, Phys. Rev. C 13, 245 (1976).ADSCrossRefGoogle Scholar
  40. 40.
    M. Anselment, W. Faubel, S. Göring, et al., Nucl. Phys. A 451, 471 (1986).ADSCrossRefGoogle Scholar
  41. 41.
    E. W. Otten, in Treatise on Heavy Ion Science, Ed. by D. A. Broemley (Plenum, New York, 1989), Vol. 8, p. 515.Google Scholar
  42. 42.
    S. B. Dutta, R. Kirchner, O. Klepper, et al., Z. Phys. A 341, 39 (1991).ADSCrossRefGoogle Scholar
  43. 43.
    M. D. Seliverstov et al., Eur. Phys. J. A 41, 315 (2009).ADSCrossRefGoogle Scholar
  44. 44.
    C.W. P. Palmer, P. E. G. Baird, S. A. Blundell, et al., J. Phys. B 17, 2197 (1984).ADSCrossRefGoogle Scholar
  45. 45.
    L. Vermeeren, R. E. Silverans, P. Lievens, et al., Phys. Rev. Lett. 68, 1679 (1992).ADSCrossRefGoogle Scholar
  46. 46.
    L. Vermeeren, P. Lievens, R. E. Silverans, et al., J. Phys. G 22, 1517 (1996).ADSCrossRefGoogle Scholar
  47. 47.
    E. Chabanat, P. Bonche, P. Haensel, et al., Nucl. Phys. A 627, 710 (1997).ADSCrossRefGoogle Scholar
  48. 48.
    I. Angeli, Yu. P. Gangrsky, K. P. Marinova, et al., J. Phys. G 36, 085102 (2009).ADSCrossRefGoogle Scholar
  49. 49.
    V. A. Khodel, A. P. Platonov, and E. E. Saperstein, J. Phys. G 8, 967 (1982).ADSCrossRefGoogle Scholar
  50. 50.
    P. Möller, J. R. Nix, W. D. Myers, and W. J. Swiatecki, At. Data Nucl. Data Tables 59, 185 (1995).ADSCrossRefGoogle Scholar
  51. 51.
    S. Goriely, F. Tondeur, and J. M. Pearson, At. Data Nucl. Data Tables 77, 311 (2001).ADSCrossRefGoogle Scholar
  52. 52.
    H. Euteneuer, J. Friedrich, and N. Voegler, Nucl. Phys. A 298, 452 (1978).ADSCrossRefGoogle Scholar
  53. 53.
    J. L. Friar, J. Heisenberg, and J. W. Negele, in Proceedings of the June Workshop in Intermediate Energy Electromagnetic Interactions, Ed. by A. M. Bernstein (Massachusetts Inst. of Technology, 1977), p. 325.Google Scholar
  54. 54.
    B. Frois, J. B. Bellicard, J. M. Cavedon, et al., Phys. Rev. Lett. 38, 152 (1977).ADSCrossRefGoogle Scholar
  55. 55.
    J. Heisenberg, R. Hofstadter, J. S. McCarthy, et al., Phys. Rev. Lett. 23, 1402 (1969).ADSCrossRefGoogle Scholar
  56. 56.
    G. J. C. van Niftrik, Nucl. Phys. A 131, 574 (1969).ADSCrossRefGoogle Scholar
  57. 57.
    M. Nagao and Y. Torizuka, Phys. Lett. B 37, 383 (1971).ADSCrossRefGoogle Scholar
  58. 58.
    J. Friedrich and F. Lenz, Nucl. Phys. A 183, 523 (1972).ADSCrossRefGoogle Scholar
  59. 59.
    H. Euteneuer, J. Friedrich, and N. Voegler, Phys. Rev. Lett. 36, 129 (1976).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  1. 1.Russian Research Centre Kurchatov InstituteMoscowRussia

Personalised recommendations