Advertisement

T-odd angular correlations in the emission of prompt gamma rays and neutrons in nuclear fission induced by polarized neutrons

  • G. V. Danilyan
  • J. Klenke
  • V. A. Krakhotin
  • Yu. N. Kopach
  • V. V. Novitsky
  • V. S. Pavlov
  • P. B. Shatalov
Nuclei Experiment

Abstract

Study of the T-odd three-vector correlation in the emission of prompt neutrons from 235U fission by polarized cold neutrons has been continued at the facility MEPHISTO of the FRM II reactor (Technical University of Munich). The sought correlation was not found within experimental error of 2.3 × 10−5. The upper limit for the asymmetry coefficient has been set to |D n | < 6 × 10−5 at 99% confidence level, whereas for ternary fission correlation coefficient D α = (170±20) × 10−5. This limit casts doubt on a model that explains the three-vector correlation in ternary fission by the Coriolis mechanism. At the same time, five-vector correlation in the emission of prompt fission neutrons has been measured, which describes the rotation of the fissioning nucleus at the moment it breaks (ROT effect). At the angle 22.5° to the fission axis, the correlation coefficient was found to be (1.57 ± 0.20) × 10−4, while at the angle of 67.5° it is zero within the experimental uncertainty. The existence of ROT effect in the emission of prompt fission neutrons can be explained by the anisotropy of neutron emission in the rest frame of the fragment (fission fragments are aligned with respect to the axis of deformation of the fissioning nucleus), similar to the mechanism of ROT effect in the emission of prompt γ-rays.

Keywords

Angular Distribution Rest Frame Neutron Beam Neutron Detector Neutron Emission 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    K. Schreckenbach, Intern. ILL Report 88SCO9T (Grenoble, 1988).Google Scholar
  2. 2.
    P. Jesinger, G. V. Danilyan, A. M. Gagarski, et al., Phys. At. Nucl. 62, 1608 (1999).Google Scholar
  3. 3.
    V. E. Bunakov and S. G. Kadmenskii, Izv. RAN, Ser. Fiz. 68, 1090 (2004).Google Scholar
  4. 4.
    F. Goennenwein, M. Mutterer, A. Gagarski, et al., Phys. Lett. B 652, 13 (2007).ADSCrossRefGoogle Scholar
  5. 5.
    G.V. Danilyan, P. Granz, V.A. Krakhotin, et al., Phys. Lett. B 679, 25 (2009).ADSCrossRefGoogle Scholar
  6. 6.
    G. V. Danilyan, J. Klenke, V. A. Krakhotin, et al., Phys. At. Nucl. 72, 1812 (2009).CrossRefGoogle Scholar
  7. 7.
    V. M. Strutinskii, Zh. Eksp. Teor. Fiz. 37, 861 (1959) [Sov. Phys. JETP 10, 613 (1959)].Google Scholar
  8. 8.
    G. V. Danilyan, J. Klenke, V. A. Krakhotin, et al., Phys. At. Nucl. 73, 1116 (2010).CrossRefGoogle Scholar
  9. 9.
    G. V. Danilyan, T. Wilpert, P. Granz, et al., Phys. At. Nucl. 71, 2003 (2008).CrossRefGoogle Scholar
  10. 10.
    G. A. Petrov, A. M. Gagarski, I. S. Guseva, et al., Phys. At. Nucl. 71, 1137 (2008).CrossRefGoogle Scholar
  11. 11.
    I. S. Guseva, in Proceedings of the XVIII International Seminar on Interactions of Neutrons with Nuclei, Dubna, Russia, 2010 (in press).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • G. V. Danilyan
    • 1
  • J. Klenke
    • 2
  • V. A. Krakhotin
    • 1
  • Yu. N. Kopach
    • 1
    • 3
  • V. V. Novitsky
    • 1
    • 3
  • V. S. Pavlov
    • 1
  • P. B. Shatalov
    • 1
  1. 1.Institute for Theoretical and Experimental PhysicsMoscowRussia
  2. 2.Forschungs-Neutronenquelle Heinz Meier-Leibnitz (FRM II)GarchingGermany
  3. 3.Frank Laboratory of Neutron PhysicsJINRDubnaRussia

Personalised recommendations