Advertisement

Physics of Atomic Nuclei

, Volume 74, Issue 1, pp 49–57 | Cite as

Dynamic polarization potentials for 6He + 209Bi and 11Li + 208Pb systems at near-barrier energies

  • S. S. Duhan
  • M. Singh
  • R. Kharab
  • H. C. Sharma
Nuclei Theory

Abstract

The Coulomb dipole induced dynamic polarization potentials for 6He + 209Bi and 11Li + 208Pb systems within the framework of Feshbach’s formalism with a motive to ascertain the presence or absence of threshold anomaly have been studied. As a result of this study, the threshold anomaly has been found to be present for both systems. It has also been found that at deep sub-barrier energies the imaginary part either starts increasing or at least remains unchanged which indicates the presence of the breakup threshold anomaly. In addition, the Coulomb breakup transmission factors for both systems have been found to have maximum value below and near-barrier energies, but at very high energies due to closure of the breakup channel the breakup transmission coefficients quickly becomes zero.

Keywords

Atomic Nucleus Incident Energy Polarization Potential Halo Nucleus 208Pb System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. Tanihata et al., Phys. Rev. Lett. 55, 2676 (1985).ADSCrossRefGoogle Scholar
  2. 2.
    I. Tanihata et al., Phys. Lett. B 206, 592 (1988).ADSCrossRefGoogle Scholar
  3. 3.
    P. Singh, R. Kumar, R. Kharab, and H. C. Sharma, Nucl. Phys. A 802, 82 (2008).ADSCrossRefGoogle Scholar
  4. 4.
    R. Kumar, P. Singh, R. Kharab, and H. C. Sharma, Mod. Phys. Lett. A 24, 213 (2009).ADSCrossRefGoogle Scholar
  5. 5.
    L. F. Canto, P. R. S. Gomes, R. Donangelo, and M. S. Hussein, Phys. Rep. 424, 1 (2006), and references therein.ADSCrossRefGoogle Scholar
  6. 6.
    M. Dasgupta, D. J. Hinde, N. Rowley, and A. M. Stefanini, Ann. Rev. Nucl. Part. Sci. 48, 401 (1998).ADSCrossRefGoogle Scholar
  7. 7.
    C. Signorini, Nucl. Phys. A 693, 190 (2001).ADSCrossRefGoogle Scholar
  8. 8.
    K. Hagino, A. Vitturi, C. H. Dasso, and S. M. Lenzi, Phys. Rev. C 61, 037602 (2000).ADSCrossRefGoogle Scholar
  9. 9.
    E. F. Aguilera et al., Phys. Rev. Lett. 84, 5058 (2000).ADSCrossRefGoogle Scholar
  10. 10.
    C. Signorini et al., Eur. Phys. J. A 10, 249 (2001).ADSCrossRefGoogle Scholar
  11. 11.
    C. H. Dasso and A. Vitturi, Phys. Rev. C 50, R12 (1994).ADSCrossRefGoogle Scholar
  12. 12.
    W. H. Z. Cárdenas, L. F. Canto, R. Donangelo, et al., Braz. J. Phys. 34(3b), 1254 (2004).CrossRefGoogle Scholar
  13. 13.
    J. J. Kolata et al., Phys. Rev. Lett. 81, 4580 (1998).ADSCrossRefGoogle Scholar
  14. 14.
    R. Raabe et al., Nature 431, 823 (2004).ADSCrossRefGoogle Scholar
  15. 15.
    P. A. De Young et al., Phys. Rev. C 58, 3442 (1998).ADSCrossRefGoogle Scholar
  16. 16.
    M. Trotta et al., Phys. Rev. Lett. 84, 2342 (2000).ADSCrossRefGoogle Scholar
  17. 17.
    A. Di Pietro et al., Phys. Rev. C 69, 044613 (2004).ADSCrossRefGoogle Scholar
  18. 18.
    N. Alamanos, A. Pakou, V. Lapoux, Phys. Rev. C 65, 054606 (2002).ADSCrossRefGoogle Scholar
  19. 19.
    C. Signorini et al., Phys. Rev. C 67, 044607 (2003).ADSCrossRefGoogle Scholar
  20. 20.
    M. V. Andrés, J. Gómez-Camacho, and M. A. Nagarajan, Nucl. Phys. A 583, 817c (1995).ADSCrossRefGoogle Scholar
  21. 21.
    W. G. Love, T. Terasawa, and G. R. Satchler, Phys. Rev. Lett. 39, 6 (1977); Nucl. Phys. A 291, 183 (1977); A. J. Baltz, S. K. Kauffmann, N. K. Glendenning, and K. Pruess, Phys. Rev. Lett. 40, 20 (1978); R. Donangelo, L. F. Canto, and M. S. Hussein, Nucl. Phys. A 320, 422 (1979).ADSCrossRefGoogle Scholar
  22. 22.
    M. V. Andrés, J. Gómez-Camacho, and M. A. Nagarajan, Nucl. Phys. A 579, 273 (1994).ADSCrossRefGoogle Scholar
  23. 23.
    L. F. Canto, R. Donangelo, P. Lotti, and M. S. Hussein, Nucl. Phys. A 589, 117 (1995).ADSCrossRefGoogle Scholar
  24. 24.
    B. Abu-Ibrahim and Y. Suzuki, Phys. Rev. C 70, 011603(2004).ADSCrossRefGoogle Scholar
  25. 25.
    G. R. Satchler, Phys. Rep. 199, 147 (1991).ADSCrossRefGoogle Scholar
  26. 26.
    M. S. Hussein, P. R. S. Gomes, J. Lubian, and L. C. Chamon, Phys. Rev. C 73, 044610 (2006).ADSCrossRefGoogle Scholar
  27. 27.
    J. Gómez-Camacho, M. V. Andrés, and M. A. Nagarajan, Nucl. Phys. A 580, 156 (1994).ADSCrossRefGoogle Scholar
  28. 28.
    C. Mahaux, H. Ngô, and G. R. Satchler, Nucl. Phys. A 449, 354 (1986).ADSCrossRefGoogle Scholar
  29. 29.
    B. Bilwes, R. Bilwes, N. VinhMau, et al., Nucl. Phys. A 526, 292 (1991).ADSCrossRefGoogle Scholar
  30. 30.
    J. S. Lilley, B. R. Fulton, M. A. Magarajan, et al., Phys. Lett. B 151, 181 (1985).ADSCrossRefGoogle Scholar
  31. 31.
    M. A. Nagarajan, C. C. Mahaux, and G. R. Satchler, Phys. Rev. Lett. 54, 1136 (1985).ADSCrossRefGoogle Scholar
  32. 32.
    J. D. Jackson, Classical Electrodynamics, 2nd ed. (Wiley, New York, 1975), p. 102.MATHGoogle Scholar
  33. 33.
    L. F. Canto, R. Donangelo, and M. S. Hussein, Nucl. Phys. A 529, 243 (1991).ADSCrossRefGoogle Scholar
  34. 34.
    K. Alder and A. Winther, Electromagnetic Excitations: Theory of Coulomb Excitation with Heavy Ions (North-Holland, Amsterdam, 1975).Google Scholar
  35. 35.
    A. J. Baltz, N. K. Glendenning, S. K. Kauffmann, and K. Pruess, Nucl. Phys. A 327, 221 (1979).ADSCrossRefGoogle Scholar
  36. 36.
    M. S. Hussein, M. P. Pato, L. F. Canto, and R. Donangelo, Phys. Rev. C 46, 377 (1992).ADSCrossRefGoogle Scholar
  37. 37.
    L. F. Canto, P. R. S. Gomes, J. Lubian, et al., Nucl. Phys. A 821, 5 (2009).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • S. S. Duhan
    • 1
  • M. Singh
    • 1
  • R. Kharab
    • 1
  • H. C. Sharma
    • 2
  1. 1.Department of PhysicsKurukshetra UniversityKurukshetraIndia
  2. 2.Department of Applied SciencesHaryana College of Technology and ManagementKaithalIndia

Personalised recommendations