Advertisement

Physics of Atomic Nuclei

, Volume 73, Issue 11, pp 1925–1930 | Cite as

Hidden symmetries and killing tensors on curved spaces

  • S. Ianuş
  • M. Visinescu
  • G. E. Vîlcu
Elementary Particles and Fields Theory

Abstract

Higher-order symmetries corresponding to Killing tensors are investigated. The intimate relation between Killing-Yano tensors and nonstandard supersymmetries is pointed out. In the Dirac theory on curved spaces, Killing-Yano tensors generate Dirac-type operators involved in interesting algebraic structures as dynamical algebras or even infinite dimensional algebras or superalgebras. The general results are applied to space-times which appear in modern studies. One presents the infinite dimensional superalgebra of Dirac type operators on the 4-dimensional Euclidean Taub-NUT space that can be seen as a twisted loop algebra. The existence of the conformal Killing-Yano tensors is investigated for some spaces with mixed 3-Sasakian structures.

Keywords

Manifold Conformal Killing Hide Symmetry Dirac Theory Conformal Killing Vector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Benenti, Rep.Math. Phys. 12, 311 (1977).zbMATHCrossRefMathSciNetADSGoogle Scholar
  2. 2.
    B. Carter, Phys. Rev. D 16, 3395 (1977).CrossRefMathSciNetADSGoogle Scholar
  3. 3.
    K. Yano, Ann. Math. 55, 328 (1952).CrossRefGoogle Scholar
  4. 4.
    G. W. Gibbons, R. Rietdijk, and J. W. van Holten, Nucl. Phys. B 404, 42 (1993).zbMATHCrossRefADSGoogle Scholar
  5. 5.
    M. Cariglia, Class. Quantum Grav. 21, 1051 (2004).zbMATHCrossRefMathSciNetADSGoogle Scholar
  6. 6.
    B. Carter and R. G. McLenaghan, Phys. Rev. D 19, 1093 (1979).CrossRefMathSciNetADSGoogle Scholar
  7. 7.
    J. Jost, Riemannian Geometry and Geometric Analysis (Springer, Berlin, 2002).zbMATHGoogle Scholar
  8. 8.
    V. P. Frolov and D. Kubiznak, Class. Quantum Grav. 25, 154005 (2008).CrossRefMathSciNetADSGoogle Scholar
  9. 9.
    G.W. Gibbons and P. J. Ruback, Comm. Math. Phys. 115, 267 (1988).zbMATHCrossRefMathSciNetADSGoogle Scholar
  10. 10.
    S. Ianus, M. Visinescu, and G. E. Vîlcu, SIGMA 5, 022 (2009).Google Scholar
  11. 11.
    C. M. Hull, J. High Energy Phys. 9811, 017 (1998).CrossRefMathSciNetADSGoogle Scholar
  12. 12.
    A. H. Taub, Ann. Math. 53, 472 (1951).CrossRefMathSciNetADSGoogle Scholar
  13. 13.
    E. Newman, L. Tamburino, and T. Unti, J. Math. Phys. 4, 915 (1963).zbMATHCrossRefMathSciNetADSGoogle Scholar
  14. 14.
    T. Kashiwada, Natur. Sci. Rep.Ochanomizu Univ. 19, 67 (1968).zbMATHMathSciNetGoogle Scholar
  15. 15.
    F. Belgun, A. Moroianu, and U. Semmelmann, Diff. Geom. Appl. 24, 215 (2006).zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    A. Moroianu and U. Semmelmann, Ann. Sc. Norm. Super. Pisa Cl. Sci. 2, 823 (2003).zbMATHMathSciNetGoogle Scholar
  17. 17.
    U. Semmelmann, Math. Z. 245, 503 (2003).zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    M. Visinescu, Mod. Phys. Lett. A 25, 341 (2010).zbMATHCrossRefMathSciNetADSGoogle Scholar
  19. 19.
    V. V. Klishevich, Class. Quantum Grav. 17, 305 (2000).zbMATHCrossRefMathSciNetADSGoogle Scholar
  20. 20.
    I. I. Cotăescu and M. Visinescu, in Frontiers in General Relativity and Quantum Cosmology Research, Horizons in World Physics (Nova Science, New York, 2007), Vol. 235, p. 109.Google Scholar
  21. 21.
    I. I. Cotăescu and M. Visinescu, Fortschr. Phys. 54, 1142 (2006).zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    I. I. Cotăescu and M. Visinescu, Fortschr. Phys. 56, 400 (2008).zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    J. Daboul, P. Slodowy, and C. Daboul, Phys. Lett. B 317, 321 (1993).CrossRefMathSciNetADSGoogle Scholar
  24. 24.
    I. I. Cotăescu and M. Visinescu, J. Phys. A 40, 11987 (2007).zbMATHCrossRefMathSciNetADSGoogle Scholar
  25. 25.
    M. Visinescu, J. Phys. A 41, 164072 (2008).CrossRefMathSciNetADSGoogle Scholar
  26. 26.
    D. V. Alekseevsky, V. Cortes, A. S. Galaev, and T. Leistner, J. Reine Angew. Math. 635, 23 (2009).zbMATHMathSciNetGoogle Scholar
  27. 27.
    C. Boyer and K. Galicki, Suppl. J. Differ. Geom. 6, 123 (1999).MathSciNetGoogle Scholar
  28. 28.
    D. E. Blair, Lect. NotesMath. 509, 1 (1976).MathSciNetGoogle Scholar
  29. 29.
    I. Sato, Tensor, New Ser. 30, 219 (1976).zbMATHGoogle Scholar
  30. 30.
    S. Ianuş, R. Mazzocco, and G. E. Vîlcu, Mediterr. J.Math. 3, 581 (2006).zbMATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    A. Caldarella and A. M. Pastore, Ann. Polon. Math. 96, 107 (2009).zbMATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    S. Ianuş and G.E. Vîlcu, Int. J. Geom. Methods Mod. Phys. 5, 893 (2008).zbMATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    D. E. Blair, Pacif. J.Math. 39, 285 (1971).zbMATHMathSciNetGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of BucharestBucharestRomania
  2. 2.Department of Theoretical PhysicsInstitute for Physics and Nuclear EngineeringMagurele, BucharestRomania
  3. 3.Department of Mathematics and Computer SciencePetroleum-Gas University of PloieştiBucharestRomania

Personalised recommendations