Advertisement

Physics of Atomic Nuclei

, Volume 73, Issue 10, pp 1770–1780 | Cite as

Extraction of bound-state parameters from dispersive sum rules

  • W. Lucha
  • D. I. MelikhovEmail author
  • S. Simula
Elementary Particles and Fields Theory

Abstract

The procedure of extracting the ground-state parameters from vacuum-to-vacuum and vacuum-to-hadron correlators within the method of sum rules is considered. The emphasis is laid on the crucial ingredient of this method—the effective continuum threshold. A new algorithm to fix this quantity is proposed and tested. First, a quantum-mechanical potential model which provides the only possibility to probe the reliability and the actual accuracy of this method is used as a study case. In this model, our algorithm is shown to lead to a remarkable improvement of the accuracy of the extracted ground-state parameters compared to the standard procedures adopted in the method and used in all previous applications of dispersive sum rules in QCD. As a next step, it is demonstrated that the procedures of extracting the ground-state decay constant in the potential model and in QCD are quantitatively very close to each other. Therefore, the application of the proposed algorithm in QCD promises a considerable increase of the accuracy of the extracted hadron parameters.

Keywords

Form Factor Atomic Nucleus Potential Model Operator Product Expansion Continuum Threshold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Shifman, A. Vainshtein, and V. Zakharov, Nucl. Phys. B 147, 385 (1979).CrossRefADSGoogle Scholar
  2. 2.
    B. L. Ioffe and A. V. Smilga, Phys. Lett. B 114, 353 (1982); V. A. Nesterenko and A. V. Radyushkin, Phys. Lett. B 115, 410 (1982).CrossRefADSGoogle Scholar
  3. 3.
    V. M. Belyaev et al., Phys. Rev. D 51, 6177 (1995).CrossRefADSGoogle Scholar
  4. 4.
    S. Ahmed et al. (CLEO Collab.), Phys. Rev. Lett. 87, 251801 (2001).CrossRefADSGoogle Scholar
  5. 5.
    V. M. Braun, A. Khodjamirian, and M. Maul, Phys. Rev. D 61, 073004 (2000).CrossRefADSGoogle Scholar
  6. 6.
    V. Braguta, W. Lucha, and D. Melikhov, Phys. Lett. B 661, 354 (2008).ADSGoogle Scholar
  7. 7.
    A. P. Bakulev, A. V. Pimikov, and N. G. Stefanis, Phys. Rev. D 79, 093010 (2009).CrossRefADSGoogle Scholar
  8. 8.
    A. I. Vainshtein, V. I. Zakharov, V. A. Novikov, and M. A. Shifman, Sov. J. Nucl. Phys. 32, 840 (1980).MathSciNetGoogle Scholar
  9. 9.
    V. A. Novikov, M. A. Shifman, A. I. Vainshtein, et al., Nucl. Phys. B 237, 525 (1984).CrossRefADSGoogle Scholar
  10. 10.
    V. A. Novikov et al., Phys. Rept. 41, 1 (1978); M. B. Voloshin, Nucl. Phys. B 154, 365 (1979); J. S. Bell and R. Bertlmann, Nucl. Phys. B 177,218 (1981); Nucl. Phys. B 187, 285 (1981); V. A. Novikov, M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, Nucl. Phys. B 191, 301 (1981).CrossRefADSGoogle Scholar
  11. 11.
    A. Le Yaouanc et al., Phys. Rev. D 62, 074007 (2000); Phys. Lett. B 488, 153 (2000); Phys. Lett. B 517, 135 (2001).CrossRefADSGoogle Scholar
  12. 12.
    D. Melikhov and S. Simula, Phys. Rev. D 62, 074012 (2000).CrossRefADSGoogle Scholar
  13. 13.
    A. V. Radyushkin, in Strong Interactions at Low and Intermediate Energies, Ed. by J. L. Goity (World Sci., Singapore, 2000), p. 91, hepph/0101227.Google Scholar
  14. 14.
    W. Lucha, D. Melikhov, and S. Simula, Phys. Rev. D 76, 036002 (2007); Phys. Lett. B 657, 148 (2007); Phys. At. Nucl. 71, 1461 (2008).CrossRefADSGoogle Scholar
  15. 15.
    W. Lucha, D. Melikhov, and S. Simula, Phys. Lett. B 671, 445 (2009).CrossRefADSGoogle Scholar
  16. 16.
    D. Melikhov, Phys. Lett. B 671, 450 (2009).CrossRefADSGoogle Scholar
  17. 17.
    W. Lucha, D. Melikhov, and S. Simula, Phys. Rev. D 79, 096011 (2009).CrossRefADSGoogle Scholar
  18. 18.
    W. Lucha, D. Melikhov, and S. Simula, J. Phys.G 37, 035003 (2010).CrossRefADSGoogle Scholar
  19. 19.
    W. Lucha, D. Melikhov, H. Sazdjian, and S. Simula, Phys. Rev. D 80, 114028 (2009).CrossRefADSGoogle Scholar
  20. 20.
    A. P. Bakulev and A. V. Radyushkin, Phys. Lett. B 271, 223 (1991).CrossRefADSGoogle Scholar
  21. 21.
    D. Melikhov, Eur. Phys. J. C 4, 2 (2002), hepph/0110087; D. Melikhov and S. Simula, Eur. Phys. J. C 37, 437 (2004); W. Lucha, D. Melikhov, and S. Simula, Phys. Rev. D 75, 016001 (2007).Google Scholar
  22. 22.
    N. S. Craigie and J. Stern, Nucl. Phys. B 216, 209 (1983).CrossRefADSGoogle Scholar
  23. 23.
    W. Lucha, D. Melikhov, and S. Simula, Phys. Lett. B 687, 48 (2010).CrossRefADSGoogle Scholar
  24. 24.
    M. Jamin and B. O. Lange, Phys. Rev. D 65, 056005 (2002).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  1. 1.Institute for High Energy PhysicsAustrian Academy of SciencesViennaAustria
  2. 2.Faculty of PhysicsUniversity of ViennaViennaAustria
  3. 3.SINPMoscow State UniversityMoscowRussia
  4. 4.Sezione di Roma IIIINFNRomaItaly

Personalised recommendations