Advertisement

Physics of Atomic Nuclei

, Volume 73, Issue 5, pp 848–877 | Cite as

Introduction to string theory and conformal field theory

  • A. A. Belavin
  • G. M. Tarnopolsky
Elementary Particles and Fields Theory

Abstract

A concise survey of noncritical string theory and two-dimensional conformal field theory is presented. A detailed derivation of a conformal anomaly and the definition and general properties of conformal field theory are given. Minimal string theory, which is a special version of the theory, is considered. Expressions for the string susceptibility and gravitational dimensions are derived.

Keywords

Correlation Function String Theory Central Charge Atomic Nucleus Singular Vector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.M. Polyakov, Phys. Lett. B 103, 207 (1981).CrossRefMathSciNetADSGoogle Scholar
  2. 2.
    A. M. Polyakov, Gauge Fields and Strings (Harwood Academic, Chur, London, 1987; Udmurtsk. Univ., Izhevsk, 1999).Google Scholar
  3. 3.
    A. A. Belavin, A. M. Polyakov, and A. B. Zamolodchikov, Nucl. Phys. B 241, 333 (1984).zbMATHCrossRefMathSciNetADSGoogle Scholar
  4. 4.
    A. B. Zamolodchikov and Al. B. Zamolodchikov, Conform Field Theory and Critical Phenomena in Two-Dimensional Systems (MTsNMO, Moscow, 2009) [in Russian].Google Scholar
  5. 5.
    V. G. Knizhnik, A. M. Polyakov, and A. B. Zamolodchikov, Mod. Phys. Lett. A 3, 819 (1988).CrossRefMathSciNetADSGoogle Scholar
  6. 6.
    F. David, Mod. Phys. Lett. A 3, 1651 (1988).CrossRefADSGoogle Scholar
  7. 7.
    J. Distler and H. Kawai, Nucl. Phys. B 321, 509 (1989).CrossRefMathSciNetADSGoogle Scholar
  8. 8.
    A. B. Zamolodchikov and Al. B. Zamolodchikov, Nucl. Phys. B 477, 577 (1996), hep-th/9506136.zbMATHCrossRefMathSciNetADSGoogle Scholar
  9. 9.
    P. Ginsparg and G. Moore, hep-th/9304011.Google Scholar
  10. 10.
    P. Di Francesco, P. H. Ginsparg, and J. Zinn-Justin, Phys. Rep. 254, 1 (1995), hep-th/9306153.CrossRefADSGoogle Scholar
  11. 11.
    Al. B. Zamolodchikov, Theor. Math. Phys. 142, 183 (2005).zbMATHMathSciNetGoogle Scholar
  12. 12.
    A. A. Belavin and Al. B. Zamolodchikov, Theor.Math. Phys. 147, 729 (2006).zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    A. A. Belavin and A. B. Zamolodchikov, hepth/0811.0450.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  1. 1.Landau Institute for Theoretical PhysicsRussian Academy of SciencesChernogolovka, Moscow oblastRussia

Personalised recommendations