Skip to main content
Log in

Spin flip of neutrinos with magnetic moment in core-collapse supernova

  • Elementary Particles and Fields
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

Neutrinos with magnetic moment experience chirality flips while scattering off charged particles. It is known that if neutrino is a Dirac fermion, then such chirality flips lead to the production of sterile right-handed neutrinos inside the core of a star during the stellar collapse, which may facilitate the supernova explosion and modify the supernova neutrino signal. In the present paper we reexamine the production of right-handed neutrinos during the collapse using a dynamical model of the collapse. We refine the estimates of the values of the Dirac magnetic moment which are necessary to substantially alter the supernova dynamics and neutrno signal. It is argued in particular that Super-Kamiokande will be sensitive at least to µν Dirac = 10−13µB in case of a galactic supernova explosion. Also we briefly discuss the case of Majorana neutrino magnetic moment. It is pointed out that in the inner supernova core spin flips may quickly equilibrate electron neutrinos with nonelectron antineutrinos if µν Majorana ≳ 10−12µB. This may lead to various consequences for supernova physics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Decamp et al. (ALEPH Collab.), Phys. Lett. B 235, 399 (1990).

    Article  ADS  Google Scholar 

  2. V. Barger, J. P. Kneller, H.-S. Lee, et al., Phys. Lett. B 566, 8 (2003).

    Article  ADS  Google Scholar 

  3. B. W. Lee and R. E. Shrock, Phys. Rev. D 16, 1444 (1977).

    Article  ADS  Google Scholar 

  4. K. Fujikawa and R. E. Shrock, Phys. Rev. Lett. 45, 963 (1980).

    Article  ADS  Google Scholar 

  5. M. B. Voloshin, Sov. J. Nucl. Phys. 48, 512 (1988).

    Google Scholar 

  6. M. Vysotsky, Mod. Phys. Lett. A 18, 877 (2003) [hep-ph/0209070].

    Article  ADS  Google Scholar 

  7. A. Cisneros, Astrophys. Space Sci. 10, 87 (1971).

    Article  ADS  Google Scholar 

  8. M. B. Voloshin and M. I. Vysotsky, Sov. J. Nucl. Phys. 44, 544 (1986).

    Google Scholar 

  9. L. B. Okun, Sov. J. Nucl. Phys. 44, 546 (1986).

    Google Scholar 

  10. L. B. Okun, M. B. Voloshin, and M. I. Vysotsky, Sov. J. Nucl. Phys. 44, 440 (1986).

    Google Scholar 

  11. A. I. Veselov, M. I. Vysotsky, and V. P. Yurov, Sov. J. Nucl. Phys. 45, 865 (1987).

    Google Scholar 

  12. L. B. Okun, M. B. Voloshin, and M. I. Vysotsky, Sov. Phys. JETP 64, 446 (1986).

    Google Scholar 

  13. A. Dar, PRINT-87-0178-IAS Inst. Advanced Study (Princeton, 1987).

  14. I. Goldman, Y. Aharonov, G. Alexander, and S. Nussinov, Phys. Rev. Lett. 60, 1789 (1988).

    Article  ADS  Google Scholar 

  15. J. M. Lattimer and J. Cooperstein, Phys. Rev. Lett. 61, 23 (1988).

    Article  ADS  Google Scholar 

  16. R. Barbieri and R. N. Mohapatra, Phys. Rev. Lett. 61, 27 (1988).

    Article  ADS  Google Scholar 

  17. D. Notzold, Phys. Rev. D 38, 1658 (1988).

    Article  ADS  Google Scholar 

  18. S. Nussinov and Y. Rephaeli, Phys. Rev. D 36, 2278 (1987).

    Article  ADS  Google Scholar 

  19. M. B. Voloshin, Phys. Lett. B 209, 360 (1988).

    Article  ADS  Google Scholar 

  20. M. B. Voloshin, JETP Lett. 47, 501 (1988).

    ADS  Google Scholar 

  21. L. B. Okun, Sov. J. Nucl. Phys. 48, 967 (1988).

    Google Scholar 

  22. S. I. Blinnikov and L. B. Okun, Pis’ma Astron. Zh. 14, 867 (1988) [Sov. Astron. Lett. 14, 368 (1988)].

    ADS  Google Scholar 

  23. J. Bernstein, M. Ruderman, and G. Feinberg, Phys. Rev. 132, 1227 (1963).

    Article  ADS  Google Scholar 

  24. M. Fukugita and S. Yazaki, Phys. Rev. D 36, 3817 (1987).

    Article  ADS  Google Scholar 

  25. S. I. Blinnikov and N. V. Dunina-Barkovskaya, Mon. Not. R. Astron. Soc. 266, 289 (1994).

    ADS  Google Scholar 

  26. G. G. Raffelt, Phys. Rep. 320, 319 (1999).

    Article  ADS  Google Scholar 

  27. A. G. Beda et al., arXiv:0906.1926 [hep-ex].

  28. A. G. Beda et al., Yad. Fiz. 70, 1925 (2007) [Phys. At. Nucl. 70, 1873 (2007)]. [arXiv:0705.4576 [hep-ex]].

    Google Scholar 

  29. C. Arpesella et al. (Borexino Collab.), Phys. Rev. Lett. 101, 091302 (2008) [arXiv:0805.3843 [astro-ph]].

    Article  ADS  Google Scholar 

  30. Z. Daraktchieva et al. (MUNUCollab.), Phys. Lett. B 564, 190 (2003) [hep-ex/0304011].

    Article  ADS  Google Scholar 

  31. A. V. Kuznetsov and N. V. Mikheev, JCAP 0711, 031 (2007) [arXiv:0709.0110 [hep-ph]].

    ADS  Google Scholar 

  32. A. Ayala, J. C. D’Olivo, and M. Torres, Phys. Rev. D 59, 111901 (1999) [hep-ph/9804230].

    Article  ADS  Google Scholar 

  33. O. Lychkovskiy, in Proc. of the 51st Scientific Conf. of MIPT (MIPT Publ., Moscow, 2008), Part II, p. 90, arXiv:0804.1005 [hep-ph].

    Google Scholar 

  34. A. V. Kuznetsov, N. V. Mikheev, and A. A. Okrugin, Int. J. Mod. Phys. A 24, 5977 (2009) [arXiv: 0907.2905 [hep-ph]].

    Article  MATH  ADS  Google Scholar 

  35. P. Elmfors, K. Enqvist, G. Raffelt, and G. Sigl, Nucl. Phys. B 503, 3 (1997) [arXiv:hep-ph/9703214].

    Article  ADS  Google Scholar 

  36. H. A. Bethe, Rev. Mod. Phys. 62, 801 (1990).

    Article  ADS  Google Scholar 

  37. A. Burrows, R. Gandhi, and M. S. Turner, Phys. Rev. Lett. 68, 3834 (1992).

    Article  ADS  Google Scholar 

  38. Joseph Chen-Yu Wang, PhD Dissertation at University of Texas at Austin (unpublished); see also http://en.wikiversity.org/wiki/BoomCode

  39. S. I. Blinnikov, N. V. Dunina-Barkovskaya, and D. K. Nadyozhin, Astrophys. J. Suppl. Ser. 106, 171 (1996).

    Article  ADS  Google Scholar 

  40. K. Sumiyoshi et al., Astrophys. J. 629, 922 (2005) [astro-ph/0506620v1].

    Article  ADS  Google Scholar 

  41. A. V. Kuznetsov, N. V. Mikheev, and A. A. Okrugin, JETP Lett. 89, 97 (2009) [arXiv:0903.2321 [hep-ph]].

    Article  ADS  Google Scholar 

  42. W. C. Haxton, Phys. Rev. D 36, 2283 (1987).

    Article  ADS  Google Scholar 

  43. G. A. Fuller, R. W. Mayle, J. R. Wilson, and D. N. Schramm, Astrophys. J. 322, 795 (1987).

    Article  ADS  Google Scholar 

  44. M. Rampp, R. Buras, H.-T. Janka, and G. Raffelt, astro-ph/0203493.

  45. T. A. Thompson, A. Burrows, and P. A. Pinto, Astrophys. J. 592, 434 (2003) [astro-ph/0211194].

    Article  ADS  Google Scholar 

  46. A. S. Dighe and A. Yu. Smirnov, Phys. Rev. D 62, 033007 (2000) [hep-ph/9907423].

    Article  ADS  Google Scholar 

  47. S. Ando and K. Sato, Phys. Rev. D 67, 023004 (2003) [hep-ph/0211053].

    Article  ADS  Google Scholar 

  48. A. Ahriche and J. Mimouni, JCAP 0311, 004 (2003) [astro-ph/0306433].

    ADS  Google Scholar 

  49. S. Ando and K. Sato, JCAP 0310, 001 (2003) [hep-ph/0309060].

    ADS  Google Scholar 

  50. E. K. Akhmedov and T. Fukuyama, JCAP 0312, 007 (2003) [hep-ph/0310119].

    ADS  Google Scholar 

  51. J. P. Vallee, Astrophys. J. 619, 297 (2005).

    Article  ADS  Google Scholar 

  52. J. Han, IAU Symp. 242, 55 (2008) [arXiv:0705.4175 [astro-ph]].

    ADS  Google Scholar 

  53. A. Nicolaidis, Phys. Lett. B 262, 303 (1991).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Lychkovskiy.

Additional information

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lychkovskiy, O.V., Blinnikov, S.I. Spin flip of neutrinos with magnetic moment in core-collapse supernova. Phys. Atom. Nuclei 73, 614–624 (2010). https://doi.org/10.1134/S106377881004006X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377881004006X

Keywords

Navigation