Advertisement

Physics of Atomic Nuclei

, Volume 73, Issue 2, pp 288–294 | Cite as

Supersymmetric partners for the associated Lamé potentials

  • D. J. Fernández
  • A. Ganguly
Elementary Particles and Fields Theory

Abstract

The general solution of the stationary Schrödinger equation for the associated Lamé potentials with an arbitrary real energy is found. The supersymmetric partners are generated by employing seed solutions for factorization energies inside the gaps.

Keywords

Atomic Nucleus Periodic Potential Supersymmetry Transformation Periodic Case Factorization Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. G. Ushveridze, Quasi-Exactly Solvable Models in Quantum Mechanics (IOP Publ. Bristol, 1994).MATHGoogle Scholar
  2. 2.
    S.S. Ranjani, A. K. Kapoor, and P. K. Panigrahi, Int. J. Theor. Phys. 44, 1167 (2005).MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    D. J. Fernandez and A. Ganguly, Phys. Lett. A 338, 203 (2005).MATHCrossRefMathSciNetADSGoogle Scholar
  4. 4.
    D. J. Fernández and A. Ganguly, Ann. Phys. (N.Y.) 322, 1143 (2007).MATHCrossRefADSGoogle Scholar
  5. 5.
    G. Dunne and J. Feinberg, Phys. Rev. D 57, 1271 (1998).CrossRefMathSciNetADSGoogle Scholar
  6. 6.
    A. Khare and U. Sukhatme, J. Math. Phys. 40, 5473 (1999).MATHCrossRefMathSciNetADSGoogle Scholar
  7. 7.
    D. J. Fernández, J. Negro, and L. M. Nieto, Phys. Lett. A 275, 338 (2000).MATHCrossRefMathSciNetADSGoogle Scholar
  8. 8.
    D. J. Fernández, B. Mielnik, O. Rosas-Ortiz, and B. F. Samsonov, Phys. Lett. A 294, 168 (2002).MATHCrossRefMathSciNetADSGoogle Scholar
  9. 9.
    D. J. Fernández, B. Mielnik, O. Rosas-Ortiz, and B. F. Samsonov, J. Phys. A 35, 4279 (2002).MATHCrossRefMathSciNetADSGoogle Scholar
  10. 10.
    B. F. Samsonov, M. L. Glasser, J. Negro, and L. M. Nieto, J. Phys. A 36, 10053 (2003).MATHCrossRefMathSciNetADSGoogle Scholar
  11. 11.
    A. A. Andrianov, M. V. Ioffe, and V. P. Spiridonov, Phys. Lett. A 174, 273 (1993).CrossRefMathSciNetADSGoogle Scholar
  12. 12.
    A. A. Andrianov, M. V. Ioffe, F. Cannata, and J. P. Dedonder, Int. J. Mod. Phys. A 10, 2683 (1995).MATHCrossRefMathSciNetADSGoogle Scholar
  13. 13.
    A. Ganguly, Mod. Phys. Lett. A 15, 1923 (2000).MATHCrossRefMathSciNetADSGoogle Scholar
  14. 14.
    A. Ganguly, J. Math. Phys. 43, 1980 (2002).MATHCrossRefMathSciNetADSGoogle Scholar
  15. 15.
    F Correa, V. Jakubský, and M. S. Plyushchay, J. Phys. A 41, 485303 (2008).CrossRefMathSciNetGoogle Scholar
  16. 16.
    A. Ganguly, M. V. Ioffe, and L. M. Nieto, J. Phys. A 39, 14659 (2006).MATHCrossRefMathSciNetADSGoogle Scholar
  17. 17.
    M. V. Ioffe, J. Mateos Guilarte, and P. A. Valinevich, Nucl. Phys. B 790, 414 (2008).MATHCrossRefMathSciNetADSGoogle Scholar
  18. 18.
    F. Correa, V. Jakubský, L. M. Nieto, and M. S. Plyushchay, Phys. Rev. Lett. 101, 030403 (2008).CrossRefMathSciNetADSGoogle Scholar
  19. 19.
    H. W. Braden and A. J. Macfarlane, J. Phys. A 18, 3151 (1985).CrossRefMathSciNetADSGoogle Scholar
  20. 20.
    L. Trlifaj, Inverse Prob. 5, 1145 (1989).MATHCrossRefMathSciNetADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  1. 1.Departamento de FísicaCinvestavMéxico D.F.Mexico
  2. 2.City CollegeUniversity of CalcuttaCalcuttaIndia

Personalised recommendations